Blow-Up Behaviors of Minimizers for the Hγc-Critical Fourth-Order Nonlinear Schrodinger Equation with the Mixed Dispersions

被引:0
|
作者
Mo, Yichun [1 ]
Youssouf, Abdoulaye Ali [2 ]
Feng, Binhua [2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou 730070, Peoples R China
[2] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourth-order nonlinear Schrodinger equation; Blow-up behavior; Minimizers; H-gamma c-critical; MASS CONCENTRATION; GROUND-STATES; EXISTENCE; STABILITY; PROFILE;
D O I
10.1007/s12346-025-01243-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider blow-up behaviors of constraint minimizers for the H-gamma c-critical fourth-order nonlinear Schrodinger equation with the mixed dispersions i psi(t)-Delta(2)psi+mu Delta psi+|psi|(p)psi=0. This equation arises in describing the propagation of intense laser beams in a bulk medium with Kerr nonlinearity. This paper seems to be the first time to present and study the minimizing problem: m(1)(c):=inf{E(u), u is an element of H-gamma c boolean AND H-2 and & Vert;u & Vert;(H gamma c)=c}, where gamma c:=N/2-4/p is the critical Sobolev exponent and E(u)=1/2 & Vert;Delta u & Vert;(2)(L2)+mu/2 & Vert;del u & Vert;(2)(L2)-1/p+2 & Vert;u & Vert;(p+2)(Lp+2). Minimizers of this problem exist only if c<& Vert;Q & Vert;(H gamma c), where Q is a solution of equation Delta(2)Q+(-Delta)(gamma c)Q-|Q|(p)Q=0. We then give a detailed description of blow-up behavior of minimizers as c NE arrow & Vert;Q & Vert;(H gamma c).
引用
收藏
页数:28
相关论文
共 50 条