The MyFlex-ζ Foot: A Variable Stiffness ESR Ankle-Foot Prosthesis

被引:0
|
作者
Tabucol, Johnnidel [1 ]
Kooiman, Vera G. M. [2 ,3 ]
Leopaldi, Marco [1 ]
Leijendekkers, Ruud [4 ,5 ]
Selleri, Giacomo [1 ]
Mellini, Marcello [1 ]
Verdonschot, Nico [6 ,7 ]
Oddsson, Magnus [8 ]
Carloni, Raffaella [9 ]
Zucchelli, Andrea [1 ]
Brugo, Tommaso M. [1 ]
机构
[1] Univ Bologna, Dept Ind Engn, I-40131 Bologna, Italy
[2] Radboud Univ Nijmegen, Med Ctr, Orthoped Res Lab, Dept Rehabil, NL-6500 HB Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands
[4] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Radboud Inst Hlth Sci, Orthoped Res Lab,Dept Rehabil,Med Ctr, NL-6500 HB Nijmegen, Netherlands
[5] Radboud Univ Nijmegen, Med Ctr, IQ Healthcare, NL-6500 HB Nijmegen, Netherlands
[6] Radboud Univ Nijmegen, Med Ctr, Orthoped Res Lab, NL-6500 HB Nijmegen, Netherlands
[7] Univ Twente, Fac Engn & Technol, Dept Biomech Engn, NL-7500 AE Enschede, Netherlands
[8] Ossur, IS-110 Reykjavik, Iceland
[9] Univ Groningen, Fac Sci & Engn, Dept Artificial Intelligence, Bernoulli Inst Math Comp Sci & Artificial Intelli, Groningen, Netherlands
关键词
Foot; Prosthetics; Legged locomotion; Ankle; Particle measurements; Force; Atmospheric measurements; Costs; Blades; Biomechanics; Amputation; biomechanical tests; prosthesis design; prosthetic feet; variable stiffness; TRANSTIBIAL AMPUTEES; POWERED KNEE; WALKING; AMPUTATION; DESIGN; ACTUATOR; FEET;
D O I
10.1109/TNSRE.2025.3534096
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Most commercially available foot prostheses are passive ESR feet, which store and release energy to reduce metabolic costs and improve comfort but cannot adjust to varying walking conditions. In contrast, bionic feet adapt to different tasks but are hindered by high weight, power consumption, and cost. This paper presents MyFlex- zeta , an ESR foot with a variable stiffness system, as a compromise between these two categories. MyFlex- zeta adjusts stiffness by varying the sagittal-plane distance between two key points, altering force interactions within the prosthesis and affecting overall stiffness. Clinical tests with three transfemoral amputees evaluated stiffness variation across two sessions: the first subjective, where participants assessed stiffness settings during different tasks, and the second biomechanical, measuring performance parameters. Two participants selected different stiffness settings for various tasks, while the third, with limited perception of stiffness changes, showed less distinction in outcomes. Greater sagittal-plane rotation and higher energy absorption were observed in most tasks with more compliant settings, although one participant's results were limited due to selecting close stiffness settings. Overall, these findings suggest MyFlex- zeta offers adaptability and performance improvements over traditional ESR feet. With further actuation and control system development, MyFlex- zeta could mark significant progress in prosthesis technology.
引用
收藏
页码:653 / 663
页数:11
相关论文
共 50 条
  • [41] Effects of ankle-foot orthoses on ankle and foot kinematics in patients with subtalar osteoarthritis
    Huang, Yu-Chi
    Harbst, Kimberly
    Kotajarvi, Brian
    Hansen, Diana
    Koff, Matthew F.
    Kitaoka, Harold B.
    Kaufman, Kenton R.
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2006, 87 (08): : 1131 - 1136
  • [42] Design of an Active Ankle-Foot Prosthesis Utilizing a Four-Bar Mechanism
    Bergelin, Bryan J.
    Voglewede, Philip A.
    JOURNAL OF MECHANICAL DESIGN, 2012, 134 (06)
  • [43] Effects of ankle-foot orthoses on ankle and foot kinematics in patient with ankle osteoarthritis
    Huang, YC
    Harbst, K
    Kotajarvi, B
    Hansen, D
    Koff, MF
    Kitaoka, HB
    Kaufman, KR
    ARCHIVES OF PHYSICAL MEDICINE AND REHABILITATION, 2006, 87 (05): : 710 - 716
  • [44] Preliminary Design and Evaluation of a Multi-axis Ankle-Foot Prosthesis
    Ficanha, Evandro M.
    Rastgaar, Mohammad
    2014 5TH IEEE RAS & EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2014, : 1033 - 1038
  • [45] Intelligent ankle-foot prosthesis based on human structure and motion bionics
    Li, Baoyu
    Xu, Guanghua
    Teng, Zhicheng
    Luo, Dan
    Pei, Jinju
    Chen, Ruiquan
    Zhang, Sicong
    JOURNAL OF NEUROENGINEERING AND REHABILITATION, 2024, 21 (01)
  • [46] Design of Powered Ankle-Foot Prosthesis Driven by Parallel Elastic Actuator
    Gao, Fei
    Liao, Wei-Hsin
    Ma, Hao
    Qin, Lai-Yin
    Chen, Bing
    PROCEEDINGS OF THE IEEE/RAS-EMBS INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR 2015), 2015, : 374 - 379
  • [47] Ankle Kinematics Describing Gait Agility: Considerations in the Design of an Agile Ankle-Foot Prosthesis
    Ficanha, Evandro M.
    Kang, Ruiyu
    Rastgaar, Mohammad
    2014 5TH IEEE RAS & EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL ROBOTICS AND BIOMECHATRONICS (BIOROB), 2014, : 132 - 137
  • [48] Design and development of a novel viscoelastic ankle-foot prosthesis based on the human ankle biomechanics
    Safaeepour, Zahra
    Esteki, Ali
    Ghomshe, Farhad Tabatabai
    Mousavai, Mohammad E.
    PROSTHETICS AND ORTHOTICS INTERNATIONAL, 2014, 38 (05) : 400 - 404
  • [49] A passive dorsiflexing ankle prosthesis to increase minimum foot clearance during swing
    Bartlett, Harrison L.
    Shepherd, Max K.
    Lawson, Brian E.
    WEARABLE TECHNOLOGIES, 2023, 4
  • [50] A modified passive-dynamic ankle-foot orthosis: can it prevent amputation and arthrodesis in patients with ankle-foot trauma?
    Jonkergouw, Niels
    de Kruijff, Loes G. M.
    Bongers, Rogier E. G.
    Swaan, Michiel W.
    Holtslag, Herman R.
    van der Meer, Alfred
    van der Wurff, Peter
    ARCHIVES OF ORTHOPAEDIC AND TRAUMA SURGERY, 2022, 142 (10) : 2719 - 2726