The MyFlex-ζ Foot: A Variable Stiffness ESR Ankle-Foot Prosthesis

被引:0
|
作者
Tabucol, Johnnidel [1 ]
Kooiman, Vera G. M. [2 ,3 ]
Leopaldi, Marco [1 ]
Leijendekkers, Ruud [4 ,5 ]
Selleri, Giacomo [1 ]
Mellini, Marcello [1 ]
Verdonschot, Nico [6 ,7 ]
Oddsson, Magnus [8 ]
Carloni, Raffaella [9 ]
Zucchelli, Andrea [1 ]
Brugo, Tommaso M. [1 ]
机构
[1] Univ Bologna, Dept Ind Engn, I-40131 Bologna, Italy
[2] Radboud Univ Nijmegen, Med Ctr, Orthoped Res Lab, Dept Rehabil, NL-6500 HB Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Donders Inst Brain Cognit & Behav, NL-6500 HB Nijmegen, Netherlands
[4] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, Radboud Inst Hlth Sci, Orthoped Res Lab,Dept Rehabil,Med Ctr, NL-6500 HB Nijmegen, Netherlands
[5] Radboud Univ Nijmegen, Med Ctr, IQ Healthcare, NL-6500 HB Nijmegen, Netherlands
[6] Radboud Univ Nijmegen, Med Ctr, Orthoped Res Lab, NL-6500 HB Nijmegen, Netherlands
[7] Univ Twente, Fac Engn & Technol, Dept Biomech Engn, NL-7500 AE Enschede, Netherlands
[8] Ossur, IS-110 Reykjavik, Iceland
[9] Univ Groningen, Fac Sci & Engn, Dept Artificial Intelligence, Bernoulli Inst Math Comp Sci & Artificial Intelli, Groningen, Netherlands
关键词
Foot; Prosthetics; Legged locomotion; Ankle; Particle measurements; Force; Atmospheric measurements; Costs; Blades; Biomechanics; Amputation; biomechanical tests; prosthesis design; prosthetic feet; variable stiffness; TRANSTIBIAL AMPUTEES; POWERED KNEE; WALKING; AMPUTATION; DESIGN; ACTUATOR; FEET;
D O I
10.1109/TNSRE.2025.3534096
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Most commercially available foot prostheses are passive ESR feet, which store and release energy to reduce metabolic costs and improve comfort but cannot adjust to varying walking conditions. In contrast, bionic feet adapt to different tasks but are hindered by high weight, power consumption, and cost. This paper presents MyFlex- zeta , an ESR foot with a variable stiffness system, as a compromise between these two categories. MyFlex- zeta adjusts stiffness by varying the sagittal-plane distance between two key points, altering force interactions within the prosthesis and affecting overall stiffness. Clinical tests with three transfemoral amputees evaluated stiffness variation across two sessions: the first subjective, where participants assessed stiffness settings during different tasks, and the second biomechanical, measuring performance parameters. Two participants selected different stiffness settings for various tasks, while the third, with limited perception of stiffness changes, showed less distinction in outcomes. Greater sagittal-plane rotation and higher energy absorption were observed in most tasks with more compliant settings, although one participant's results were limited due to selecting close stiffness settings. Overall, these findings suggest MyFlex- zeta offers adaptability and performance improvements over traditional ESR feet. With further actuation and control system development, MyFlex- zeta could mark significant progress in prosthesis technology.
引用
收藏
页码:653 / 663
页数:11
相关论文
共 50 条
  • [31] Design of Powered Ankle-Foot Prosthesis With Nonlinear Parallel Spring Mechanism
    Gao, Fei
    Liu, Yannan
    Liao, Wei-Hsin
    JOURNAL OF MECHANICAL DESIGN, 2018, 140 (05)
  • [32] Shortcomings of human-in-the-loop optimization of an ankle-foot prosthesis emulator: a case series
    Welker, Cara Gonzalez
    Voloshina, Alexandra S.
    Chiu, Vincent L.
    Collins, Steven H.
    ROYAL SOCIETY OPEN SCIENCE, 2021, 8 (05):
  • [33] Effects of a powered ankle-foot prosthesis on kinetic loading of the contralateral limb: A case series
    Hill, David
    Herr, Hugh
    2013 IEEE 13TH INTERNATIONAL CONFERENCE ON REHABILITATION ROBOTICS (ICORR), 2013,
  • [34] The impact of ankle-foot orthosis stiffness on gait: A systematic literature review
    Totah, Deema
    Menon, Meghna
    Jones-Hershinow, Carlie
    Barton, Kira
    Gates, Deanna H.
    GAIT & POSTURE, 2019, 69 : 101 - 111
  • [35] Design and dynamic modelling of an ankle-foot prosthesis for humanoid robot
    Alves, Joana
    Seabra, Eurico
    Ferreira, Cesar
    Santos, Cristina P.
    Reis, Luis Paulo
    2017 IEEE INTERNATIONAL CONFERENCE ON AUTONOMOUS ROBOT SYSTEMS AND COMPETITIONS (ICARSC), 2017, : 128 - 133
  • [36] Development of a Bimodal Ankle-Foot Prosthesis for Walking and Standing/Swaying
    Hansen, Andrew H.
    Nickel, Eric A.
    JOURNAL OF MEDICAL DEVICES-TRANSACTIONS OF THE ASME, 2013, 7 (03):
  • [37] Roll-over shapes of the ankle-foot and knee-ankle-foot systems of able-bodied children
    Hansen, Andrew H.
    Meier, Margrit R.
    CLINICAL BIOMECHANICS, 2010, 25 (03) : 248 - 255
  • [38] Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis
    Glanzer, Evan M.
    Adamczyk, Peter G.
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (12) : 2351 - 2359
  • [39] Novel passive ankle-foot prosthesis mimics able-bodied ankle angles and ground reaction forces
    Schlafly, Millicent
    Reed, Kyle B.
    CLINICAL BIOMECHANICS, 2020, 72 : 202 - 210
  • [40] A Method for Quantifying Stiffness of Ankle-Foot Orthoses Through Motion Capture and Optimization Algorithm
    Ramezani, Sepehr
    Brady, Brian
    Kim, Hogene
    Carroll, Michael K.
    Choi, Hwan
    IEEE ACCESS, 2022, 10 : 58930 - 58937