We propose a general framework to characterize gapped infra-red (IR) phases of theories with non-invertible (or categorical) symmetries. In this paper we focus on (1+1)d gapped phases with fusion category symmetries. The approach that we propose uses the Symmetry Topological Field Theory (SymTFT) as a key input: associated to a field theory in d spacetime dimensions, the SymTFT lives in one dimension higher and admits a gapped boundary, which realizes the categorical symmetries. It also admits a second, physical, boundary, which is generically not gapped. Upon interval compactification of the SymTFT by colliding the gapped and physical boundaries, we regain the original theory. In this paper, we realize gapped symmetric phases by choosing the physical boundary to be a gapped boundary condition as well. This set-up provides computational power to determine the number of vacua, the symmetry breaking pattern, and the action of the symmetry on the vacua. The SymTFT also manifestly encodes the order parameters for these gapped phases, thus providing a generalized, categorical Landau paradigm for (1+1)d gapped phases. We find that for non-invertible symmetries the order parameters involve multiplets containing both untwisted and twisted sector local operators, and hence can be interpreted as mixtures of conventional and string order parameters [1]. We also observe that spontaneous breaking of non-invertible symmetries can lead to vacua that are physically distinguishable: unlike the standard symmetries described by groups, non-invertible symmetries can have different actions on different vacua of an irreducible gapped phase. This leads to the presence of relative Euler terms between physically distinct vacua. Along with the physical description of symmetric gapped phases, we also provide a mathematical one as pivotal 2-functors whose source 2-category is the delooping of the fusion category characterizing the symmetry and the target 2-category is the Euler completion of 2-vector spaces.