Gen-AI Methods, Molecular Docking and Molecular Dynamics Simulations for Identification of Novel Inhibitors of MmPL3 Transporter of Mycobacterium tuberculosis

被引:0
作者
Pawar, Atul [1 ]
Almutairi, Tahani Mazyad [2 ]
Shinde, Omkar [1 ]
Chikhale, Rupesh [3 ]
机构
[1] HCAH India, Nagananda Commercial Complex,07-3,15-1,18th Main R, Bengaluru 5600413, India
[2] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
[3] UCL, Sch Pharm, Dept Pharmaceut & Biol Chem, London, England
来源
JOURNAL OF COMPUTATIONAL BIOPHYSICS AND CHEMISTRY | 2025年 / 24卷 / 04期
关键词
MmPL3; Dela-Drug; machine learning; molecular docking; molecular dynamics simulation; anti-TB drugs; AMR; VIRULENCE; ACCURACY; UPDATE;
D O I
10.1142/S2737416524500674
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mycobacterium tuberculosis (Mtb), the bacterium responsible for tuberculosis (TB), employs mycolic acids to build its cell wall. This robust structure plays a vital role in protecting the bacterium from external threats and contributes to its resistance against antibiotics. Mycobacterial membrane protein Large 3 (MmpL3), a secondary resistance nodulation division transporter, is essential in mycolic acid biosynthesis, transporting mycolic acid precursors into the periplasm using the proton motive force. Due to its role in bacterial cell wall formation, it is a promising target for new tuberculosis treatments. In this study, starting with 85 known MmPL3 compounds, the artificial intelligence (AI)-assisted tool "Design of Druglike Analogues (DeLA-Drug)" was employed to generate about 15,000 novel molecules. These compounds were then subjected to structure-based high-throughput virtual screening and molecular dynamics (MD) simulations to identify potential novel inhibitors of MmpL3. The binding affinity was obtained by docking the above molecules at the SQ109 binding site in MmPL3, followed by pharmacokinetics and toxicity, which were used to reduce the chemical space. Finally, five ligands were subjected to 100 ns MD simulations to investigate the binding energetics of inhibitors to MmpL3. These compounds demonstrated stable binding and favorable drug-like properties, indicating that they could serve as potential novel inhibitors of MmpL3 for Mtb.
引用
收藏
页码:471 / 489
页数:19
相关论文
共 44 条
[1]   A diarylquinoline drug active on the ATP synthase of Mycobacterium tuberculosis [J].
Andries, K ;
Verhasselt, P ;
Guillemont, J ;
Göhlmann, HWH ;
Neefs, JM ;
Winkler, H ;
Van Gestel, J ;
Timmerman, P ;
Zhu, M ;
Lee, E ;
Williams, P ;
de Chaffoy, D ;
Huitric, E ;
Hoffner, S ;
Cambau, E ;
Truffot-Pernot, C ;
Lounis, N ;
Jarlier, V .
SCIENCE, 2005, 307 (5707) :223-227
[2]   Identification of anti-mycobacterial agents against mmpL3: Virtual screening, ADMET analysis and MD simulations [J].
Bhakhar, Kaushikkumar A. ;
Gajjar, Normi D. ;
Bodiwala, Kunjan B. ;
Sureja, Dipen K. ;
Dhameliya, Tejas M. .
JOURNAL OF MOLECULAR STRUCTURE, 2021, 1244
[3]   CHARMM: The Biomolecular Simulation Program [J].
Brooks, B. R. ;
Brooks, C. L., III ;
Mackerell, A. D., Jr. ;
Nilsson, L. ;
Petrella, R. J. ;
Roux, B. ;
Won, Y. ;
Archontis, G. ;
Bartels, C. ;
Boresch, S. ;
Caflisch, A. ;
Caves, L. ;
Cui, Q. ;
Dinner, A. R. ;
Feig, M. ;
Fischer, S. ;
Gao, J. ;
Hodoscek, M. ;
Im, W. ;
Kuczera, K. ;
Lazaridis, T. ;
Ma, J. ;
Ovchinnikov, V. ;
Paci, E. ;
Pastor, R. W. ;
Post, C. B. ;
Pu, J. Z. ;
Schaefer, M. ;
Tidor, B. ;
Venable, R. M. ;
Woodcock, H. L. ;
Wu, X. ;
Yang, W. ;
York, D. M. ;
Karplus, M. .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2009, 30 (10) :1545-1614
[4]   Structure of the Mycobacterium tuberculosis D-Alanine:D-Alanine Ligase, a Target of the Antituberculosis Drug D-Cycloserine [J].
Bruning, John B. ;
Murillo, Ana C. ;
Chacon, Ofelia ;
Barletta, Raul G. ;
Sacchettini, James C. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2011, 55 (01) :291-301
[5]   RCSB Protein Data Bank (RCSB.org): delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning [J].
Burley, Stephen K. ;
Bhikadiya, Charmi ;
Bi, Chunxiao ;
Bittrich, Sebastian ;
Chao, Henry ;
Chen, Li ;
Craig, Paul A. ;
Crichlow, Gregg, V ;
Dalenberg, Kenneth ;
Duarte, Jose M. ;
Dutta, Shuchismita ;
Fayazi, Maryam ;
Feng, Zukang ;
Flatt, Justin W. ;
Ganesan, Sai ;
Ghosh, Sutapa ;
Goodsell, David S. ;
Green, Rachel Kramer ;
Guranovic, Vladimir ;
Henry, Jeremy ;
Hudson, Brian P. ;
Khokhriakov, Igor ;
Lawson, Catherine L. ;
Liang, Yuhe ;
Lowe, Robert ;
Peisach, Ezra ;
Persikova, Irina ;
Piehl, Dennis W. ;
Rose, Yana ;
Sali, Andrej ;
Segura, Joan ;
Sekharan, Monica ;
Shao, Chenghua ;
Vallat, Brinda ;
Voigt, Maria ;
Webb, Ben ;
Westbrook, John D. ;
Whetstone, Shamara ;
Young, Jasmine Y. ;
Zalevsky, Arthur ;
Zardecki, Christine .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D488-D508
[6]  
Butt Sania Safdar, 2020, JMIR Bioinform Biotechnol, V1, pe14232, DOI 10.2196/14232
[7]   Identification of novel hit molecules targeting M. tuberculosis polyketide synthase 13 by combining generative AI and physics-based methods [J].
Chikhale R.V. ;
Choudhary R. ;
Malhotra J. ;
Eldesoky G.E. ;
Mangal P. ;
Patil P.C. .
Computers in Biology and Medicine, 2024, 176
[8]   Identification of Mycobacterium tuberculosis transcriptional repressor EthR inhibitors: Shape-based search and machine learning studies [J].
Chikhale, Rupesh V. ;
Eldesoky, Gaber E. ;
Kolpe, Mahima Sudhir ;
Suryawanshi, Vikramsinh Sardarsinh ;
Patil, Pritee Chunarkar ;
Bhowmick, Shovonlal .
HELIYON, 2024, 10 (05)
[9]   Machine learning assisted methods for the identification of low toxicity inhibitors of Enoyl-Acyl Carrier Protein Reductase (InhA) [J].
Chikhale, Rupesh, V ;
Abdelghani, Heba Taha M. ;
Deka, Hemchandra ;
Pawar, Atul Darasing ;
Patil, Pritee Chunarkar ;
Bhowmick, Shovonlal .
COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2024, 110
[10]   Novel Inhibitors to MmpL3 Transporter of Mycobacterium tuberculosis by Structure-Based High-Throughput Virtual Screening and Molecular Dynamics Simulations [J].
Choksi, Hetanshi ;
Carbone, Justin ;
Paradis, Nicholas J. ;
Bennett, Lucas ;
Bui-Linh, Candice ;
Wu, Chun .
ACS OMEGA, 2024, 9 (12) :13782-13796