Estimation of Daylily Leaf Area Index by Synergy Multispectral and Radar Remote-Sensing Data Based on Machine-Learning Algorithm

被引:0
|
作者
Hu, Minhuan [1 ]
Wang, Jingshu [1 ]
Yang, Peng [1 ]
Li, Ping [1 ]
He, Peng [1 ]
Bi, Rutian [1 ,2 ]
机构
[1] Shanxi Agr Univ, Coll Resource & Environm, Jinzhong 030801, Peoples R China
[2] Datong Daylily Ind Dev Res Inst, Datong 037004, Peoples R China
来源
AGRONOMY-BASEL | 2025年 / 15卷 / 02期
关键词
daylily; leaf area index; optical and microwave remote sensing; random forest feature selection; machine learning; HYPERSPECTRAL VEGETATION INDEXES; CHLOROPHYLL CONTENT; SAR; RICE; LAI; AGRICULTURE; VALIDATION; REGRESSION;
D O I
10.3390/agronomy15020456
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Rapid and accurate leaf area index (LAI) determination is important for monitoring daylily growth, yield estimation, and field management. Because of low estimation accuracy of empirical models based on single-source data, we proposed a machine-learning algorithm combining optical and microwave remote-sensing data as well as the random forest regression (RFR) importance score to select features. A high-precision LAI estimation model for daylilies was constructed by optimizing feature combinations. The RFR importance score screened the top five important features, including vegetation indices land surface water index (LSWI), generalized difference vegetation index (GDVI), normalized difference yellowness index (NDYI), and backscatter coefficients VV and VH. Vegetation index features characterized canopy moisture and the color of daylilies, and the backscatter coefficient reflected dielectric properties and geometric structure. The selected features were sensitive to daylily LAI. The RFR algorithm had good anti-noise performance and strong fitting ability; thus, its accuracy was better than the partial least squares regression and artificial neural network models. Synergistic optical and microwave data more comprehensively reflected the physical and chemical properties of daylilies, making the RFR-VI-BC05 model after feature selection better than the others ( r = 0.711, RMSE = 0.498, and NRMSE = 9.10%). This study expanded methods for estimating daylily LAI by combining optical and radar data, providing technical support for daylily management.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Study on the Estimation of Leaf Area Index in Rice Based on UAV RGB and Multispectral Data
    Zhang, Yuan
    Jiang, Youyi
    Xu, Bo
    Yang, Guijun
    Feng, Haikuan
    Yang, Xiaodong
    Yang, Hao
    Liu, Changbin
    Cheng, Zhida
    Feng, Ziheng
    REMOTE SENSING, 2024, 16 (16)
  • [2] A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning
    Houborg, Rasmus
    McCabe, Matthew F.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 135 : 173 - 188
  • [3] Leaf Area Index Estimation Algorithm for GF-5 Hyperspectral Data Based on Different Feature Selection and Machine Learning Methods
    Chen, Zhulin
    Jia, Kun
    Xiao, Chenchao
    Wei, Dandan
    Zhao, Xiang
    Lan, Jinhui
    Wei, Xiangqin
    Yao, Yunjun
    Wang, Bing
    Sun, Yuan
    Wang, Lei
    REMOTE SENSING, 2020, 12 (13)
  • [4] Comparison of Machine Learning Methods for Estimating Leaf Area Index and Aboveground Biomass of Cinnamomum camphora Based on UAV Multispectral Remote Sensing Data
    Wang, Qian
    Lu, Xianghui
    Zhang, Haina
    Yang, Baocheng
    Gong, Rongxin
    Zhang, Jie
    Jin, Zhinong
    Xie, Rongxiu
    Xia, Jinwen
    Zhao, Jianmin
    FORESTS, 2023, 14 (08):
  • [5] Leaf Area Index Estimation of Pergola-Trained Vineyards in Arid Regions Based on UAV RGB and Multispectral Data Using Machine Learning Methods
    Ilniyaz, Osman
    Kurban, Alishir
    Du, Qingyun
    REMOTE SENSING, 2022, 14 (02)
  • [6] Estimation of Leaf Area Index for Dendrocalamus giganteus Based on Multi-Source Remote Sensing Data
    Qin, Zhen
    Yang, Huanfen
    Shu, Qingtai
    Yu, Jinge
    Xu, Li
    Wang, Mingxing
    Xia, Cuifen
    Duan, Dandan
    FORESTS, 2024, 15 (07):
  • [7] Estimation of forest leaf area index using satellite multispectral and synthetic aperture radar data in Iran
    Vafaei, Sasan
    Fathizadeh, Omid
    Puletti, Nicola
    Fadaei, Hadi
    Rasooli, Sabri Baqer
    Laurin, Gaia Vaglio
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2021, 14 : 278 - 284
  • [8] Leaf Area Index Estimation of Masson Pine (Pinus massoniana) Forests Based on Multispectral Remote Sensing of UAV
    Yao X.
    Yu K.
    Liu J.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2021, 52 (07): : 213 - 221
  • [9] Leaf area index remote sensing based on Deep Belief Network supported by simulation data
    Sun, Lin
    Wang, Weiyan
    Jia, Chen
    Liu, Xirong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (20) : 7637 - 7661
  • [10] Estimation of Forest Leaf Area Index Based on Random Forest Model and Remote Sensing Data
    Yao X.
    Yu K.
    Yang Y.
    Zeng Q.
    Chen Z.
    Liu J.
    Liu, Jian (fjliujian@126.com), 1600, Chinese Society of Agricultural Machinery (48): : 159 - 166