Hyperspectral and multispectral image fusion: When model-driven meet data-driven strategies

被引:1
作者
Yan, Hao-Fang [1 ]
Zhao, Yong-Qiang [1 ]
Chan, Jonathan Cheung-Wai [2 ]
Kong, Seong G. [3 ]
EI-Bendary, Nashwa [4 ]
Reda, Mohamed [5 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[2] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
[3] Sejong Univ, Dept Comp Engn, Seoul 05006, South Korea
[4] Arab Acad Sci Technol & Maritime Transport AASTMT, Coll Comp & Informat Technol, Kerdasa, Egypt
[5] Mil Tech Coll, Cairo 11765, Egypt
基金
中国国家自然科学基金;
关键词
Technical review; Hyperspectral and multispectral image fusion; Model-driven; Data-driven; Model-data-driven; TENSOR FACTORIZATION; MAP ESTIMATION; SUPERRESOLUTION; MULTIRESOLUTION; DECOMPOSITION; NETWORK; CLASSIFICATION; REPRESENTATION; TRANSFORM; INVERSION;
D O I
10.1016/j.inffus.2024.102803
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral image (HSI) and Multispectral Image (MSI) fusion aims at combining a high-resolution MSI (HR MSI) with a low-resolution HSI (LR HSI), resulting in a fused image that contains the spatial resolution of the former and the spectral resolution of the latter. This approach offers a cost-effective alternative to directly acquiring high-resolution HSIs (HR HSIs). In this survey, we offer an extensive literature review tailored for students and professionals seeking deeper insights into the subject matter. We delve into existing HSI-MSI fusion methods and revealed a spectrum of approaches, ranging from model-driven techniques (extended CS and MRA, Bayesian, matrix factorization, and tensor representation) to data-driven methods (CNN, GAN, and Transformer) and model-data-driven approaches (model-guided networks and semi-supervised or unsupervised methods). This exploration aims to optimize fusion strategies for various applications. This paper not only provides a comprehensive overview of HSI-MSI fusion strategies, but also summarizes and contrasts their unique characteristics, benefits, and limitations. Additionally, it reviews image quality evaluation indices (both full-reference and noreference) and widely used datasets. Furthermore, using hybrid data, large-view-field satellite data and real satellite data pairs, the reduced-resolution and full-resolution experimental comparison analysis of various algorithms from three strategies are carried out. Finally, the paper identifies unresolved challenges and outlines potential future research directions in this evolving field.
引用
收藏
页数:24
相关论文
共 201 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]   MTF-tailored multiscale fusion of high-resolution MS and pan imagery [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Garzelli, A. ;
Selva, M. .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2006, 72 (05) :591-596
[3]   Full scale assessment of pansharpening methods and data products [J].
Aiazzi, B. ;
Alparone, L. ;
Baronti, S. ;
Carla, R. ;
Garzelli, A. ;
Santurri, L. .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XX, 2014, 9244
[4]   Improving component substitution pansharpening through multivariate regression of MS plus Pan data [J].
Aiazzi, Bruno ;
Baronti, Stefano ;
Selva, Massimo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2007, 45 (10) :3230-3239
[5]   Detection and Analysis of the Intestinal Ischemia Using Visible and Invisible Hyperspectral Imaging [J].
Akbari, Hamed ;
Kosugi, Yukio ;
Kojima, Kazuyuki ;
Tanaka, Naofumi .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (08) :2011-2017
[6]  
Akhtar N, 2015, PROC CVPR IEEE, P3631, DOI 10.1109/CVPR.2015.7298986
[7]   Sparse Spatio-spectral Representation for Hyperspectral Image Super-resolution [J].
Akhtar, Naveed ;
Shafait, Faisal ;
Mian, Ajmal .
COMPUTER VISION - ECCV 2014, PT VII, 2014, 8695 :63-78
[8]   Multispectral and panchromatic data fusion assessment without reference [J].
Alparone, Luciano ;
Alazzi, Bruno ;
Baronti, Stefano ;
Garzelli, Andrea ;
Nencini, Filippo ;
Selva, Massimo .
PHOTOGRAMMETRIC ENGINEERING AND REMOTE SENSING, 2008, 74 (02) :193-200
[9]  
Alparone L, 2018, INT GEOSCI REMOTE SE, P5132, DOI 10.1109/IGARSS.2018.8518869
[10]   HyperTransformer: A Textural and Spectral Feature Fusion Transformer for Pansharpening [J].
Bandara, Wele Gedara Chaminda ;
Patel, Vishal M. .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :1757-1767