GRADIENT ESTIMATES FOR POSITIVE EIGENFUNCTIONS OF THE L -OPERATOR ON CONFORMAL SOLITONS AND THEIR APPLICATIONS

被引:0
作者
Zhao, Guangwen [1 ]
机构
[1] Wuhan Univ Technol, Sch Sci, Dept Math, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
conformal soliton; gradient estimate; Liouville type theorem; MEAN-CURVATURE FLOW; MAXIMUM PRINCIPLE; HARMONIC MAPS;
D O I
10.1017/S000497272400100X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a local gradient estimate for positive eigenfunctions of the L-operator on conformal solitons given by a general conformal vector field. As an application, we obtain a Liouville type theorem for Lu = 0, which improves the one of Li and Sun ['Gradient estimate for the positive solutions of Lu = 0 and Lu = partial derivative u/partial derivative t on conformal solitons', Acta Math. Sin. (Engl. Ser.) 37 (11) (2021), 1768-1782]. We also consider applications where manifolds are special conformal solitons and obtain a better Liouville type theorem in the case of self-shrinkers.
引用
收藏
页数:12
相关论文
共 11 条