Integrating hyperspectral radiative transfer modeling and Machine learning for enhanced nitrogen sensing in almond leaves

被引:0
作者
Chakraborty, Momtanu [1 ]
Pourreza, Alireza [1 ]
Peanusaha, Sirapoom [1 ]
Farajpoor, Parastoo [1 ]
Khalsa, Sat Darshan S. [2 ]
Brown, Patrick H. [2 ]
机构
[1] Univ Calif Davis, Dept Biol & Agr Syst Engn, Digital Agr Lab, Davis, CA 95616 USA
[2] Univ Calif Davis, Coll Agr & Environm Sci, Dept Plant Sci, Davis, CA USA
关键词
Nitrogen; Radiative Transfer Model; PROSPECT; Almond; SWIR; Gaussian process regression; Hybrid Spectral Modeling; OPTICAL-PROPERTIES; VEGETATION INDEX; LEAF NITROGEN; REFLECTANCE; PREDICTION; PROSPECT;
D O I
10.1016/j.compag.2025.110195
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Precisely quantifying crop nitrogen content is critical for adopting sustainable nutrient management practices. This study offers a comprehensive analysis of using hyperspectral data to accurately measure area-based nitrogen content (N) in almond trees at the leaf level. We collected spectral data ranging from 400 to 2500 nm of multiple leaves from 190 samples across two orchards spanning two years. Our methodology involves building a hybrid model that merges a physically based model (PROSPECT-PRO) and a data-driven model (multi-output Gaussian process regression), demonstrating exceptional performance in area-based nitrogen prediction, achieving R2 values of 0.54 and an RMSE of 0.03 mg/cm2 for area-based nitrogen sensing. The hybrid method incorporates synthetic spectra produced through principal component analysis (PCA) and labeled with biochemical traits retrieved by PROSPECT-PRO for training and validation, while the real data was kept unseen for testing. We compared the performance of physically based, hybrid, and data-driven models using R2 and NRMSE as metrics. The Partial Least Squares Regression (PLSR) model showed a strong relationship between leaf N and spectral reflectance (R2 = 0.75); however, PLSR is prone to bias from the training set and may perform poorly on unseen data. The findings also highlight the importance of the Short-Wave Infrared region in nitrogen determination, particularly the bands from 2100 to 2200 nm. Additionally, protein content was found to be a more reliable proxy for nitrogen than chlorophyll. By comparing the retrieved leaf traits with ground truth data, we realized that PROSPECT PRO consistently underestimates almond leaf traits such equivalent water thickness (EWT), carbon-based compounds (CBC), and overestimates Nitrogen. Therefore, adjustment factors were determined for these traits that are estimated with PROSPECT-PRO.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] 3D radiative transfer modeling of almond canopy for nitrogen estimation by hyperspectral imaging
    Oswald, Damian
    Pourreza, Alireza
    Chakraborty, Momtanu
    Khalsa, Sat Darshan S.
    Brown, Patrick H.
    PRECISION AGRICULTURE, 2025, 26 (01)
  • [2] Airborne hyperspectral imaging of nitrogen deficiency on crop traits and yield of maize by machine learning and radiative transfer modeling
    Wang, Sheng
    Guan, Kaiyu
    Wang, Zhihui
    Ainsworth, Elizabeth A.
    Zheng, Ting
    Townsend, Philip A.
    Liu, Nanfeng
    Nafziger, Emerson
    Masters, Michael D.
    Li, Kaiyuan
    Wu, Genghong
    Jiang, Chongya
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2021, 105
  • [3] Estimation of wheat biophysical variables through UAV hyperspectral remote sensing using machine learning and radiative transfer models
    Sahoo, Rabi N.
    Rejith, R. G.
    Gakhar, Shalini
    Verrelst, Jochem
    Ranjan, Rajeev
    Kondraju, Tarun
    Meena, Mahesh C.
    Mukherjee, Joydeep
    Dass, Anchal
    Kumar, Sudhir
    Kumar, Mahesh
    Dhandapani, Raju
    Chinnusamy, Viswanathan
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 221
  • [4] Design of a hyperspectral nitrogen sensing system for orange leaves
    Min, Min
    Lee, Won Suk
    Burks, Thomas F.
    Jordan, Jonathan D.
    Schumann, Arnold W.
    Schueller, John K.
    Xie, Huikai
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2008, 63 (02) : 215 - 226
  • [5] Machine Learning Optimised Hyperspectral Remote Sensing Retrieves Cotton Nitrogen Status
    Marang, Ian J.
    Filippi, Patrick
    Weaver, Tim B.
    Evans, Bradley J.
    Whelan, Brett M.
    Bishop, Thomas F. A.
    Murad, Mohammed O. F.
    Al-Shammari, Dhahi
    Roth, Guy
    REMOTE SENSING, 2021, 13 (08)
  • [6] Application of machine learning to hyperspectral radiative transfer simulations
    Le, Tianhao
    Liu, Chao
    Yao, Bin
    Natraj, Vijay
    Yung, Yuk L.
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 246
  • [7] Nitrogen retrieval in grapevine (Vitis vinifera L.) leaves by hyperspectral sensing
    Peanusaha, Sirapoom
    Pourreza, Alireza
    Kamiya, Yuto
    Fidelibus, Matthew W.
    Chakraborty, Momtanu
    REMOTE SENSING OF ENVIRONMENT, 2024, 302
  • [8] Airborne hyperspectral imaging of cover crops through radiative transfer process-guided machine learning
    Wang, Sheng
    Guan, Kaiyu
    Zhang, Chenhui
    Jiang, Chongya
    Zhou, Qu
    Li, Kaiyuan
    Qin, Ziqi
    Ainsworth, Elizabeth A.
    He, Jingrui
    Wu, Jun
    Schaefer, Dan
    Gentry, Lowell E.
    Margenot, Andrew J.
    Herzberger, Leo
    REMOTE SENSING OF ENVIRONMENT, 2023, 285
  • [9] Prediction of diffuse solar radiation by integrating radiative transfer model and machine-learning techniques
    Lu, Yunbo
    Zhang, Renlan
    Wang, Lunche
    Su, Xin
    Zhang, Ming
    Li, Huaping
    Li, Shiyu
    Zhou, Jiaojiao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 859
  • [10] Estimating soil moisture content under grassland with hyperspectral data using radiative transfer modelling and machine learning
    Doepper, Veronika
    Rocha, Alby Duarte
    Berger, Katja
    Graenzig, Tobias
    Verrelst, Jochem
    Kleinschmit, Birgit
    Foerster, Michael
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 110