Differential systems in Sobolev spaces with generic inhomogeneous boundary conditions

被引:0
作者
Mikhailets, V. A. [1 ]
Atlasiuk, O. M. [1 ,2 ]
机构
[1] Natl Acad Sci Ukraine, Inst Math, 3 Tereschenkivska Str, UA-01024 Kyiv, Ukraine
[2] Univ Helsinki, 4 Yliopistonkatu str, Helsinki 00100, Finland
基金
芬兰科学院;
关键词
boundary-value problem; Sobolev space; Fredholm operator; index of operator; continuity in parameter; limit theorem; PARAMETER; EQUATIONS;
D O I
10.15330/cmp.16.2.523-538
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The paper contains a review of results on linear systems of ordinary differential equations of an arbitrary order on a finite interval with the most general inhomogeneous boundary conditions in Sobolev spaces. The character of the solvability of such problems is investigated, their Fredholm properties are established, and their indexes and the dimensions of their kernels and co-kernels are found. In addition, necessary and sufficient conditions of continuity in the parameter of the solutions of the introduced classes of boundary-value problems in Sobolev spaces of an arbitrary order are obtained.
引用
收藏
页码:523 / 538
页数:16
相关论文
共 36 条
[1]  
Ashordia M, 1996, CZECH MATH J, V46, P385
[2]  
Atlasiuk O., 2024, Trends in Mathematics, V5, P37
[3]   Limit Theorems for the Solutions of Multipoint Boundary-Value Problems with Parameter in Sobolev Spaces [J].
Atlasiuk, O. M. .
UKRAINIAN MATHEMATICAL JOURNAL, 2021, 72 (08) :1175-1184
[4]   Fredholm One-Dimensional Boundary-Value Problems with Parameters in Sobolev Spaces [J].
Atlasiuk, O. M. ;
Mikhailets, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (11) :1677-1687
[5]   Fredholm One-Dimensional Boundary-Value Problems in Sobolev Spaces [J].
Atlasiuk, O. M. ;
Mikhailets, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2019, 70 (10) :1526-1537
[6]  
Atlasiuk O.M., 2020, DOP NAT AKAD NAUK UK, P3, DOI [10.15407/dopovidi2020.06.003, DOI 10.15407/dopovidi2020.06.003]
[7]  
Atlasiuk O.M., 2020, J. Math. Sci., V247, P238, DOI [10.1007/s10958-020-04799-w, DOI 10.1007/S10958-020-04799-W]
[8]  
Boichuk A. A., 2004, GEN INVERSE OPERATOR
[9]  
Gantmacher FR., 1959, THEORY MATRICES
[10]   Fredholm Boundary-Value Problems with Parameter in Sobolev Spaces [J].
Gnyp, E. V. ;
Kodlyuk, T. I. ;
Mikhailets, V. A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (05) :658-667