Current materials for 3D-printed flexible medical electrodes

被引:2
作者
Huang, Yiting [1 ,2 ]
Zhu, Qi [1 ,2 ]
Liu, Haofan [1 ,2 ]
Ren, Ya [3 ]
Zhang, Li [1 ,2 ]
Gou, Maling [1 ,2 ]
机构
[1] Sichuan Univ, West China Hosp, Canc Ctr, Dept Biotherapy, Chengdu, Sichuan, Peoples R China
[2] Sichuan Univ, West China Hosp, State Key Lab Biotherapy, Chengdu, Sichuan, Peoples R China
[3] Huahang Microcreate Technol Co Ltd, Chengdu 610041, Sichuan, Peoples R China
来源
MATERIALS SCIENCE IN ADDITIVE MANUFACTURING | 2023年 / 2卷 / 04期
关键词
3D printing; Biomaterials; Flexible electrodes; Conductive materials; POLYMERS; BRAIN; INTERFACE; FILM;
D O I
10.36922/msam.2084
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Electrodes serve as essential tools for both acquiring and stimulating electrical signals, pivotal in monitoring human health through electrophysiological signals and playing a significant role in disease management and treatment. Notably, Young's modulus of flexible electrodes is similar to that of tissues and organs, thereby avoiding tissue or organ damage arising from mechanical mismatch. Thus, flexible electrodes become the fundamental devices for ensuring the stable, long-term acquisition of electrical signals and delivering reversed electrical stimulation to guide disease treatment. Reducing the size of flexible electrodes and increasing the number of electrode channels are significant for improving the sensitivity and accuracy of signal acquisition. In comparison to traditional manufacturing methods, 3D printing technology is able to fabricate products with higher resolution at a much faster speed. It is customizable and provides a novel approach for preparing flexible electrodes. Many conductive materials have been developed and applied to prepare flexible electrodes, and some have been integrated into 3D printing techniques, driving forward the development of 3D-printed flexible electrodes in medical fields. This article reviews recent research advances concerning the combination of these materials with 3D printing technology to prepare flexible electrodes and categorizes the materials into four main groups, namely metallic materials, carbon-based materials, conductive polymers, and other materials. In addition, we outline the future directions regarding the application of 3D-printed flexible electrodes in clinical research and medical translation.
引用
收藏
页数:18
相关论文
共 144 条
[71]   Ionic liquid/poly(ionic liquid)-based electrolytes for lithium batteries [J].
Ma, Xinyu ;
Yu, Jiangtao ;
Hu, Yin ;
Texter, John ;
Yan, Feng .
INDUSTRIAL CHEMISTRY & MATERIALS, 2023, 1 (01) :39-59
[72]   Reduced graphene oxide: Biofabrication and environmental applications [J].
Manikandan, Velu ;
Lee, Nae Yoon .
CHEMOSPHERE, 2023, 311
[73]   Conjunction of Conducting Polymer Nanostructures with Macroporous Structured Graphene Thin Films for High-Performance Flexible Supercapacitors [J].
Memon, Mushtaque A. ;
Bai, Wei ;
Sun, Jinhua ;
Imran, Muhammad ;
Phulpoto, Shah Nawaz ;
Yan, Shouke ;
Huang, Yong ;
Geng, Jianxin .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (18) :11711-11719
[74]   A high-performance neuroprosthesis for speech decoding and avatar control [J].
Metzger, Sean L. ;
Littlejohn, Kaylo T. ;
Silva, Alexander B. ;
Moses, David A. ;
Seaton, Margaret P. ;
Wang, Ran ;
Dougherty, Maximilian E. ;
Liu, Jessie R. ;
Wu, Peter ;
Berger, Michael A. ;
Zhuravleva, Inga ;
Tu-Chan, Adelyn ;
Ganguly, Karunesh ;
Anumanchipalli, Gopala K. ;
Chang, Edward F. .
NATURE, 2023, 620 (7976) :1037-+
[75]   Cyclic polyacetylene [J].
Miao, Zhihui ;
Gonsales, Stella A. ;
Ehm, Christian ;
Mentink-Vigier, Frederic ;
Bowers, Clifford R. ;
Sumerlin, Brent S. ;
Veige, Adam S. .
NATURE CHEMISTRY, 2021, 13 (08) :792-+
[76]   An Integrated Brain-Machine Interface Platform With Thousands of Channels [J].
Musk, Elon .
JOURNAL OF MEDICAL INTERNET RESEARCH, 2019, 21 (10)
[77]   A review on inkjet printing of nanoparticle inks for flexible electronics [J].
Nayak, Laxmidhar ;
Mohanty, Smita ;
Nayak, Sanjay Kumar ;
Ramadoss, Ananthakumar .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (29) :8771-8795
[78]   Liquid Metal Direct Write and 3D Printing: A Review [J].
Neumann, Taylor V. ;
Dickey, Michael D. .
ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (09)
[79]   Different Roles between PEDOT:PSS as Counter Electrode and PEDOT:Carrageenan as Electrolyte in Dye-Sensitized Solar Cell Applications: A Systematic Literature Review [J].
Nurazizah, Euis Siti ;
Aprilia, Annisa ;
Risdiana, Risdiana ;
Safriani, Lusi .
POLYMERS, 2023, 15 (12)
[80]   Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics [J].
O'Neill, Stephen J. K. ;
Huang, Zehuan ;
Ahmed, Mohammed H. ;
Boys, Alexander J. ;
Velasco-Bosom, Santiago ;
Li, Jiaxuan ;
Owens, Roisin M. ;
McCune, Jade A. ;
Malliaras, George G. ;
Scherman, Oren A. .
ADVANCED MATERIALS, 2023, 35 (01)