RGBDS-SLAM: A RGB-D Semantic Dense SLAM Based on 3D Multi Level Pyramid Gaussian Splatting

被引:0
|
作者
Cao, Zhenzhong [1 ,2 ]
Zhao, Chenyang [1 ,2 ]
Zhang, Qianyi [1 ,2 ]
Guang, Jinzheng [1 ,2 ]
Song, Yinuo [1 ,2 ]
Liu, Jingtai [1 ,2 ]
机构
[1] Nankai Univ, Inst Robot & Automat Informat Syst, Coll Artificial Intelligence, Tianjin 300353, Peoples R China
[2] Nankai Univ, Tianjin Key Lab Intelligent Robot, Tianjin 300350, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 05期
基金
中国国家自然科学基金;
关键词
Semantics; Three-dimensional displays; Simultaneous localization and mapping; Image reconstruction; Training; Optimization; Image color analysis; Neural radiance field; Rendering (computer graphics); Real-time systems; 3D Gaussian splatting; 3D reconstruction; SLAM; semantic scene understanding;
D O I
10.1109/LRA.2025.3553049
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
High-fidelity reconstruction is crucial for dense SLAM. Recent popular methods utilize 3D Gaussian splatting (3D GS) techniques for RGB, depth, and semantic reconstruction of scenes. However, these methods ignore issues of detail and consistency in different parts of the scene. To address this, we propose RGBDS-SLAM, a RGB-D semantic dense SLAM system based on 3D multi-level pyramid Gaussian splatting, which enables high-fidelity dense reconstruction of scene RGB, depth, and semantics. In this system, we introduce a 3D multi-level pyramid Gaussian splatting method that restores scene details by extracting multi-level image pyramids for Gaussian splatting training, ensuring consistency in RGB, depth, and semantic reconstructions. Additionally, we design a tightly-coupled multi-features reconstruction optimization mechanism, allowing the reconstruction accuracy of RGB, depth, and semantic features to mutually enhance each other during the rendering optimization process. Extensive quantitative, qualitative, and ablation experiments on the Replica and ScanNet public datasets demonstrate that our proposed method outperforms current state-of-the-art methods, which achieves great improvement by 11.13% in PSNR and 68.57% in LPIPS.
引用
收藏
页码:4778 / 4785
页数:8
相关论文
共 50 条
  • [1] NEDS-SLAM: A Neural Explicit Dense Semantic SLAM Framework Using 3D Gaussian Splatting
    Ji, Yiming
    Liu, Yang
    Xie, Guanghu
    Ma, Boyu
    Xie, Zongwu
    Liu, Hong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (10): : 8778 - 8785
  • [2] Semantic Segmentation based Dense RGB-D SLAM in Dynamic Environments
    Zhang, Jianbo
    Liu, Yanjie
    Chen, Junguo
    Ma, Liulong
    Jin, Dong
    Chen, Jiao
    2019 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, AUTOMATION AND CONTROL TECHNOLOGIES (AIACT 2019), 2019, 1267
  • [3] CG-SLAM: Efficient Dense RGB-D SLAM in a Consistent Uncertainty-Aware 3D Gaussian Field
    Hu, Jiarui
    Chen, Xianhao
    Feng, Boyin
    Li, Guanglin
    Yang, Liangjing
    Bao, Hujun
    Zhang, Guofeng
    Cui, Zhaopeng
    COMPUTER VISION - ECCV 2024, PT XXV, 2025, 15083 : 93 - 112
  • [4] 3D Planar RGB-D SLAM System
    ElGhor, Hakim ElChaoui
    Roussel, David
    Ababsa, Fakhreddine
    Bouyakhf, El-Houssine
    ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS, ACIVS 2016, 2016, 10016 : 486 - 497
  • [5] Dense RGB-D SLAM with Multiple Cameras
    Meng, Xinrui
    Gao, Wei
    Hu, Zhanyi
    SENSORS, 2018, 18 (07)
  • [6] Dense Visual SLAM for RGB-D Cameras
    Kerl, Christian
    Sturm, Juergen
    Cremers, Daniel
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 2100 - 2106
  • [7] NIS-SLAM: Neural Implicit Semantic RGB-D SLAM for 3D Consistent Scene Understanding
    Zhai, Hongjia
    Huang, Gan
    Hu, Qirui
    Li, Guanglin
    Bao, Hujun
    Zhang, Guofeng
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (11) : 7129 - 7139
  • [8] SplaTAM: Splat, Track & Map 3D Gaussians for Dense RGB-D SLAM
    Keetha, Nikhil
    Karhade, Jay
    Jatavallabhula, Krishna Murthy
    Yang, Gengshan
    Scherer, Sebastian
    Ramanan, Deva
    Luiten, Jonathon
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 21357 - 21366
  • [9] RGB-D dense SLAM with keyframe-based method
    Fu, Xingyin
    Zhu, Feng
    Wu, Qingxiao
    Sun, Yunlei
    THREE-DIMENSIONAL IMAGE ACQUISITION AND DISPLAY TECHNOLOGY AND APPLICATIONS, 2018, 10845
  • [10] RGB-D Based Semantic SLAM Framework for Rescue Robot
    Deng, Wenbang
    Huang, Kaihong
    Chen, Xieyuanli
    Zhou, Zhiqian
    Shi, Chenghao
    Guo, Ruibin
    Zhang, Hui
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6023 - 6028