Dynamic mode decomposition based MPC of fluidized bed spray agglomeration

被引:0
作者
Otto, E. [1 ]
Duerr, R. [2 ]
Bueck, A. [3 ]
Kienle, A. [1 ,4 ]
机构
[1] Otto von Guericke Univ, D-39106 Magdeburg, Germany
[2] Magdeburg Stendal Univ Appl Sci, D-39114 Magdeburg, Germany
[3] Friedrich Alexander Univ Erlangen Nuremberg, D-91058 Erlangen, Germany
[4] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 14期
关键词
Control of particulate processes; Data-driven control; Model-predictive control; Linear system identification; Model order reduction; PREDICTIVE CONTROL; FEEDBACK-CONTROL; GRANULATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fluidized bed spray agglomeration (FBSA) is an efficient particle formation process for the production of granules extensively used in the food, agricultural and pharmaceutical industry. Specifications on agglomerate properties such as the agglomerate size determine the quality of the product and can be controlled by varying different process conditions. In this contribution data-driven model predictive control (MPC) of the average agglomerate size is presented. Dynamic mode decomposition (DMD) is used to identify a linear model of the process dynamics from snapshot measurements of the particle size distribution. Using DMD as system identification technique eliminates the complex process of identifying a mechanistic process model and at the same time includes advantageous model order reduction for the MPC application. The DMD model is obtained from simulated data and validated against a second, independent, data set. Subsequently, the model is deployed in an MPC controller, which is tested in a simulation study, showing promising performance in set point tracking and disturbance rejection scenarios.
引用
收藏
页码:694 / 699
页数:6
相关论文
共 18 条
[1]  
Arbabi H, 2018, IEEE DECIS CONTR P, P6409, DOI 10.1109/CDC.2018.8619720
[2]  
Bück A, 2016, J PROCESS CONTR, V45, P65, DOI [10.1016/j.jprocont.2016.07.003, 10.1016/j.jprocont.2016:07.003]
[3]   Feedback control strategies for a continuous industrial fluidized-bed granulation process [J].
Cotabarren, Ivana M. ;
Bertin, Diego E. ;
Bucala, Veronica ;
Pina, Juliana .
POWDER TECHNOLOGY, 2015, 283 :415-432
[4]   Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition [J].
Dawson, Scott T. M. ;
Hemati, Maziar S. ;
Williams, Matthew O. ;
Rowley, Clarence W. .
EXPERIMENTS IN FLUIDS, 2016, 57 (03)
[5]   Model predictive control of continuous drum granulation [J].
Glaser, Thomas ;
Sanders, Constantijn F. W. ;
Wang, Fu. Y. ;
Cameron, Ian T. ;
Litster, James D. ;
Poon, Jonathan M. -H. ;
Ramachandran, Rohit ;
Immanuel, Charles D. ;
Doyle, Francis J., III .
JOURNAL OF PROCESS CONTROL, 2009, 19 (04) :615-622
[6]  
Kouvaritakis B, 2016, ADV TXB CONTR SIG PR, P1, DOI 10.1007/978-3-319-24853-0
[7]   Constrained model predictive control: Stability and optimality [J].
Mayne, DQ ;
Rawlings, JB ;
Rao, CV ;
Scokaert, POM .
AUTOMATICA, 2000, 36 (06) :789-814
[8]   Discrepancy-based control of particle processes [J].
Otto, Eric ;
Behrens, Jessica ;
Palis, Stefan ;
Duerr, Robert ;
Kienle, Achim .
JOURNAL OF PROCESS CONTROL, 2022, 110 :99-109
[9]   Kernel identification in continuous fluidized bed spray agglomeration from steady state data [J].
Otto, Eric ;
Duerr, Robert ;
Strenzke, Gerd ;
Palis, Stefan ;
Bueck, Andreas ;
Tsotsas, Evangelos ;
Kienle, Achim .
ADVANCED POWDER TECHNOLOGY, 2021, 32 (07) :2517-2529
[10]   Output Feedback Control of Distributed Parameter Systems Using Adaptive Proper Orthogonal Decomposition [J].
Pitchaiah, Sivakumar ;
Armaou, Antonios .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2010, 49 (21) :10496-10509