共 56 条
- [1] Vanderhoof M.K., Brunner N., Beal Y.-J.G., Hawbaker T.J., Evaluation of the U. S. geological survey landsat burned area essential climate variable across the conterminous U. S, using commercial high-resolution imagery, Remote Sens, 9, (2017)
- [2] Pengra B., Gallant A.L., Zhu Z., Dahal D., Evaluation of the initial thematic output from a continuous change-detection algorithm for use in automated operational land-change mapping by the U. S, Geological Survey, Remote Sens, 8, (2016)
- [3] Roteta E., Bastarrika A., Franquesa M., Chuvieco E., Landsat and sentinel-2 based burned area mapping tools in google earth engine, Remote Sens, 13, (2021)
- [4] Conrad C., Fritsch S., Zeidler J., Rucker G., Dech S., Per-field irrigated crop classification in arid Central Asia Using SPOT and ASTER Data, Remote Sens, 2, pp. 1035-1056, (2010)
- [5] Lin L., Di L., Tang J., Yu E., Zhang C., Rahman M.S., Et al., Improvement and validation of NASA/MODIS NRT global flood mapping, Remote Sens, 11, (2019)
- [6] Vafaei S., Soosani J., Adeli K., Fadaei H., Naghavi H., Pham T.D., Et al., Improving accuracy estimation of forest aboveground biomass based on incorporation of ALOS-2 PALSAR-2 and sentinel-2A imagery and machine learning: a case study of the hyrcanian forest area (Iran), Remote Sens, 10, (2018)
- [7] Bar S., Parida B.R., Pandey A.C., Landsat-8 and Sentinel-2 based Forest fire burn area mapping using machine learning algorithms on GEE cloud platform over Uttarakhand, Western Himalaya, Remote Sens Appl Soc Environ, 18, (2020)
- [8] Geological Survey
- [9] Friedl M.A., McIver D.K., Hodges J.C., Zhang X.Y., Muchoney D., Strahler A.H., Et al., Global land cover mapping from MODIS: algorithms and early results, Remote Sens Environ, 83, pp. 287-302, (2002)
- [10] Sidhu N., Pebesma E., Camara G., Using google earth engine to detect land cover change,” Singapore as a use case Using Google Earth Engine to detect land cover change: Singapore as a use, Eur J Remote Sens, 51, pp. 486-500, (2018)