Benchmarking the integration of hexagonal boron nitride crystals and thin films into graphene-based van der Waals heterostructures

被引:0
|
作者
Ouaj, Taoufiq [1 ,2 ]
Arnold, Christophe [3 ]
Azpeitia, Jon [4 ]
Baltic, Sunaja [1 ,2 ]
Barjon, Julien [3 ]
Cascales, Jose [4 ]
Cun, Huanyao [5 ]
Esteban, David [4 ]
Garcia-Hernandez, Mar [4 ]
Garnier, Vincent [6 ]
Gautam, Subodh K. [3 ]
Greber, Thomas [7 ]
Said Hassani, Said [3 ]
Hemmi, Adrian [7 ]
Jimenez, Ignacio [4 ]
Journet, Catherine [8 ]
Koegerler, Paul [9 ,10 ]
Loiseau, Annick [11 ]
Maestre, Camille [8 ]
Metzelaars, Marvin [1 ,2 ,9 ]
Schmidt, Philipp [1 ,2 ]
Stampfer, Christoph [1 ,2 ,12 ]
Stenger, Ingrid [3 ]
Steyer, Philippe [6 ]
Taniguchi, Takashi [13 ]
Toury, Berangere [8 ]
Watanabe, Kenji [14 ]
Beschoten, Bernd [1 ,2 ]
机构
[1] Rhein Westfal TH Aachen, Inst Phys 2, D-52074 Aachen, Germany
[2] Rhein Westfal TH Aachen, JARA FIT, D-52074 Aachen, Germany
[3] Univ Paris Saclay, Saclay, France
[4] CSIC, Inst Ciencia Mat Madrid ICMM, Sor Juana Ines de la Cruz 3, Madrid 28049, Spain
[5] Univ Zurich, Phys Inst, CH-8057 Zurich, Switzerland
[6] Univ Claude Bernard Lyon 1, MATEIS,UMR5510, Villeurbanne, France
[7] Univ Zurich, Phys Inst, Zurich, Switzerland
[8] Univ Claude Bernard Lyon 1, CNRS, LMI, UMR 5615, F-69100 Villeurbanne, France
[9] Rhein Westfal TH Aachen, Inst Inorgan Chem, D-52074 Aachen, Germany
[10] Forschungszentrum Julich, Peter Grunberg Inst PGI 6, D-52425 Julich, Germany
[11] Univ Paris Saclay, ONERA, CNRS, Lab Etud Microstruct, F-92322 Chatillon, France
[12] Forschungszentrum Julich, Peter Grunberg Inst PGI 9, D-52425 Julich, Germany
[13] Natl Inst Mat Sci, 1 1 Namiki, Ibaraki, Japan
[14] Natl Inst Mat Sci, Res Ctr Elect & Opt Mat, 1 1 Namiki, Tsukuba 3050044, Japan
来源
2D MATERIALS | 2025年 / 12卷 / 01期
基金
欧盟地平线“2020”; 欧洲研究理事会; 瑞士国家科学基金会;
关键词
hBN; graphene; crystal growth; thin film growth; charge carrier mobility; SINGLE-CRYSTALS; ATMOSPHERIC-PRESSURE; RAMAN-SPECTROSCOPY; GROWTH; SYSTEM; LAYER; SUBSTRATE; DEFECTS;
D O I
10.1088/2053-1583/ad96c9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We present a benchmarking protocol that combines the characterization of boron nitride (BN) crystals and films with the evaluation of the electronic properties of graphene on these substrates. Our study includes hBN crystals grown under different conditions (atmospheric pressure high temperature, high pressure high temperature, pressure controlled furnace) and scalable BN films deposited by either chemical or physical vapor deposition (PVD). We explore the complete process from boron nitride growth, over its optical characterization by time-resolved cathodoluminescence (TRCL), to the optical and electronic characterization of graphene by Raman spectroscopy after encapsulation and Hall bar processing. Within our benchmarking protocol we achieve a homogeneous electronic performance within each Hall bar device through a fast and reproducible processing routine. We find that a free exciton lifetime of 1ns measured on as-grown hBN crystals by TRCL is sufficient to achieve high graphene room temperature charge carrier mobilities of 80000cm2(Vs)-1 at a carrier density of |n|=1x1012cm-2, while respective exciton lifetimes around 100ps yield mobilities up to 30000cm2(Vs)-1. For scalable PVD-grown BN films, we measure carrier mobilities exceeding 10000cm2(Vs)-1 which correlates with a graphene Raman 2D peak linewidth of 22cm-1. Our work highlights the importance of the Raman 2D linewidth of graphene as a critical metric that effectively assesses the interface quality (i.e. surface roughness) to the BN substrate, which directly affects the charge carrier mobility of graphene. Graphene 2D linewidth analysis is suitable for all BN substrates and is particularly advantageous when TRCL or BN Raman spectroscopy cannot be applied to specific BN materials such as amorphous or thin films. This underlines the superior role of spatially-resolved spectroscopy in the evaluation of BN crystals and films for the use of high-mobility graphene devices.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Fluorinated graphene and hexagonal boron nitride as ALD seed layers for graphene-based van der Waals heterostructures
    Guo, Hongwei
    Liu, Yunlong
    Xu, Yang
    Meng, Nan
    Wang, Hongtao
    Hasan, Tawfique
    Wang, Xinran
    Luo, Jikui
    Yu, Bin
    NANOTECHNOLOGY, 2014, 25 (35)
  • [2] van der Waals heterostructures combining graphene and hexagonal boron nitride
    Yankowitz, Matthew
    Ma, Qiong
    Jarillo-Herrero, Pablo
    LeRoy, Brian J.
    NATURE REVIEWS PHYSICS, 2019, 1 (02) : 112 - 125
  • [3] van der Waals heterostructures combining graphene and hexagonal boron nitride
    Matthew Yankowitz
    Qiong Ma
    Pablo Jarillo-Herrero
    Brian J. LeRoy
    Nature Reviews Physics, 2019, 1 : 112 - 125
  • [4] Quasiperiodic Van der Waals Heterostructures of Graphene and Hexagonal Boron Nitride
    Bhandary, Sumanta
    Haldar, Soumyajyoti
    Sanyal, Biplab
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2022, 259 (02):
  • [5] Spintronics with graphene-hexagonal boron nitride van der Waals heterostructures
    Kamalakar, M. Venkata
    Dankert, Andre
    Bergsten, Johan
    Ive, Tommy
    Dash, Saroj P.
    APPLIED PHYSICS LETTERS, 2014, 105 (21)
  • [6] Thermal Rectification in Asymmetric Graphene/Hexagonal Boron Nitride van der Waals Heterostructures
    Chen, Xue-Kun
    Pang, Min
    Chen, Tong
    Du, Dan
    Chen, Ke-Qiu
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (13) : 15517 - 15526
  • [7] Graphene-hexagonal boron nitride van der Waals heterostructures: an examination of the effects of different van der Waals corrections
    Sevilla, John Radly M.
    Putungan, Darwin B.
    MATERIALS RESEARCH EXPRESS, 2021, 8 (08)
  • [8] Van der Waals integration of silicene and hexagonal boron nitride
    Wiggers, F. B.
    Fleurence, A.
    Aoyagi, K.
    Yonezawa, T.
    Yamada-Takamura, Y.
    Feng, H.
    Zhuang, J.
    Du, Y.
    Kovalgin, A. Y.
    de Jong, M. P.
    2D MATERIALS, 2019, 6 (03):
  • [9] Influence of Proximity to Supporting Substrate on van der Waals Epitaxy of Atomically Thin Graphene/Hexagonal Boron Nitride Heterostructures
    Heilmann, Martin
    Prikhodko, Alexander S.
    Hanke, Michael
    Sabelfeld, Alexander
    Borgardt, Nikolai I.
    Lopes, J. Marcelo J.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) : 8897 - 8907
  • [10] Machine Learning for Thermal Conductivity Prediction in Graphene/Hexagonal Boron Nitride van der Waals Heterostructures
    Yang, Youzhe
    Yang, Richard Chunhui
    Yang, Jie
    Wei, Ning
    Zhang, Yingyan
    JOURNAL OF PHYSICAL CHEMISTRY C, 2025, 129 (05): : 2764 - 2774