A novel genome-wide association study method for detecting quantitative trait loci interacting with complex population structures in plant genetics

被引:0
作者
Hamazaki, Kosuke [1 ,2 ]
Iwata, Hiroyoshi [1 ]
Mary-Huard, Tristan [3 ,4 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Agr & Environm Biol, Tokyo 1138657, Japan
[2] RIKEN, RIKEN Ctr Adv Intelligence Project AIP, Mol Informat Team, 178-4-4 Wakashiba, Kashiwa, Chiba 2770871, Japan
[3] Univ Paris Saclay, MIA Paris Saclay, INRAE, AgroParisTech, F-91120 Palaiseau, France
[4] Univ Paris Saclay, INRAE, CNRS, AgroParisTech,Genet Quantitat & Evolut Le Moulon, F-91190 Gif Sur Yvette, France
关键词
GWAS; population-specific QTLs; population structure; epistasis; continuous structure; haplotype block; MAGIC; MPP; AGRONOMIC TRAITS; RARE ALLELE; MODEL; DISCOVERY; ANCESTRY; REVEALS; VARIANT; SUSCEPTIBILITY; VALIDATION; INFERENCE;
D O I
10.1093/genetics/iyaf038
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In plant genetics, most modern association analyses are performed on panels that bring together individuals from several populations, including admixed individuals whose genomes comprise chromosomal regions from different populations. These panels can identify quantitative trait loci (QTLs) with population-specific effects and epistatic interactions between QTLs and polygenic backgrounds. However, analyzing a diverse panel constitutes a challenge for statistical analysis. The statistical model must account for possible interactions between a QTL and the panel structure while strictly controlling the detection error rate. Although models to detect population-specific QTLs have already been developed, they rely on prior information about the population structure. In practice, this prior information may be missing as many genome-wide association study (GWAS) panels exhibit complex population structures. The present study introduces 2 new models for detecting QTLs interacting with complex population structures. Both incorporate an interaction term between single nucleotide polymorphism/haplotype block and genetic background into conventional GWAS models. The proposed models were compared with state-of-the-art models through simulation studies that considered QTLs with different levels of interaction with their genetic backgrounds. Results showed that models matching simulation settings were most effective for detecting corresponding QTLs while the proposed models outperformed classical models in detecting QTLs interacting with polygenes. Additionally, when applied to a soybean dataset, one of our models identified putative associated QTLs that conventional models failed to detect. The new models, implemented in the RAINBOWR package available on CRAN, are expected to help uncover complex trait genetic architectures.
引用
收藏
页数:14
相关论文
共 82 条
[71]   Joint Testing of Genotype and Ancestry Association in Admixed Families [J].
Tang, Hua ;
Siegmund, David O. ;
Johnson, Nicholas A. ;
Romieu, Isabelle ;
London, Stephanie J. .
GENETIC EPIDEMIOLOGY, 2010, 34 (08) :783-791
[72]  
Thorndike R.L., 1953, PSYCHOMETRIKA, V18, P267, DOI DOI 10.1007/BF02289263
[73]   Genomic selection in admixed and crossbred populations [J].
Toosi, A. ;
Fernando, R. L. ;
Dekkers, J. C. M. .
JOURNAL OF ANIMAL SCIENCE, 2010, 88 (01) :32-46
[74]   10 Years of GWAS Discovery: Biology, Function, and Translation [J].
Visscher, Peter M. ;
Wray, Naomi R. ;
Zhang, Qian ;
Sklar, Pamela ;
McCarthy, Mark I. ;
Brown, Matthew A. ;
Yang, Jian .
AMERICAN JOURNAL OF HUMAN GENETICS, 2017, 101 (01) :5-22
[75]   Genetic analyses of diverse populations improves discovery for complex traits [J].
Wojcik, Genevieve L. ;
Graff, Mariaelisa ;
Nishimura, Katherine K. ;
Tao, Ran ;
Haessler, Jeffrey ;
Gignoux, Christopher R. ;
Highland, Heather M. ;
Patel, Yesha M. ;
Sorokin, Elena P. ;
Avery, Christy L. ;
Belbin, Gillian M. ;
Bien, Stephanie A. ;
Cheng, Iona ;
Cullina, Sinead ;
Hodonsky, Chani J. ;
Hu, Yao ;
Huckins, Laura M. ;
Jeff, Janina ;
Justice, Anne E. ;
Kocarnik, Jonathan M. ;
Lim, Unhee ;
Lin, Bridget M. ;
Lu, Yingchang ;
Nelson, Sarah C. ;
Park, Sung-Shim L. ;
Poisner, Hannah ;
Preuss, Michael H. ;
Richard, Melissa A. ;
Schurmann, Claudia ;
Setiawan, Veronica W. ;
Sockell, Alexandra ;
Vahi, Karan ;
Verbanck, Marie ;
Vishnu, Abhishek ;
Walker, Ryan W. ;
Young, Kristin L. ;
Zubair, Niha ;
Acuna-Alonso, Victor ;
Ambite, Jose Luis ;
Barnes, Kathleen C. ;
Boerwinkle, Eric ;
Bottinger, Erwin P. ;
Bustamante, Carlos D. ;
Caberto, Christian ;
Canizales-Quinteros, Samuel ;
Conomos, Matthew P. ;
Deelman, Ewa ;
Do, Ron ;
Doheny, Kimberly ;
Fernandez-Rhodes, Lindsay .
NATURE, 2019, 570 (7762) :514-+
[76]   Rare-Variant Association Testing for Sequencing Data with the Sequence Kernel Association Test [J].
Wu, Michael C. ;
Lee, Seunggeun ;
Cai, Tianxi ;
Li, Yun ;
Boehnke, Michael ;
Lin, Xihong .
AMERICAN JOURNAL OF HUMAN GENETICS, 2011, 89 (01) :82-93
[77]   Genomic insight into the influence of selection, crossbreeding, and geography on population structure in poultry [J].
Wu, Zhou ;
Bosse, Mirte ;
Rochus, Christina. M. M. ;
Groenen, Martien A. M. ;
Crooijmans, Richard P. M. A. .
GENETICS SELECTION EVOLUTION, 2023, 55 (01)
[78]   A benchmark study on current GWAS models in admixed populations [J].
Yang, Zikun ;
Cieza, Basilio ;
Reyes-Dumeyer, Dolly ;
Montesinos, Rosa ;
Soto-Anari, Marcio ;
Custodio, Nilton ;
Tosto, Giuseppe .
BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
[79]   Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice [J].
Yano, Kenji ;
Yamamoto, Eiji ;
Aya, Koichiro ;
Takeuchi, Hideyuki ;
Lo, Pei-ching ;
Hu, Li ;
Yamasaki, Masanori ;
Yoshida, Shinya ;
Kitano, Hidemi ;
Hirano, Ko ;
Matsuoka, Makoto .
NATURE GENETICS, 2016, 48 (08) :927-+
[80]   A unified mixed-model method for association mapping that accounts for multiple levels of relatedness [J].
Yu, JM ;
Pressoir, G ;
Briggs, WH ;
Bi, IV ;
Yamasaki, M ;
Doebley, JF ;
McMullen, MD ;
Gaut, BS ;
Nielsen, DM ;
Holland, JB ;
Kresovich, S ;
Buckler, ES .
NATURE GENETICS, 2006, 38 (02) :203-208