Determinants of Visual Impairment Among Chinese Middle-Aged and Older Adults: Risk Prediction Model Using Machine Learning Algorithms

被引:1
作者
Mao, Lijun [1 ]
Yu, Zhen [2 ]
Lin, Luotao [3 ]
Sharma, Manoj [4 ,5 ]
Song, Hualing [1 ]
Zhao, Hailei [1 ]
Xu, Xianglong [1 ,6 ,7 ]
机构
[1] Shanghai Univ Tradit Chinese Med, Sch Publ Hlth, 1200 Cai Lun Rd, Shanghai 201203, Peoples R China
[2] Monash Univ, Fac Engn, Monash E Res Ctr, Nvidia AI Technol Res Ctr,Airdoc Res, Melbourne, Australia
[3] Univ New Mexico, Dept Individual Family & Community Educ, Nutr & Dietet Program, Albuquerque, NM USA
[4] Univ Nevada Las Vegas, Sch Publ Hlth, Dept Social & Behav Hlth, Las Vegas, NV USA
[5] Univ Nevada Las Vegas, Kirk Kerkorian Sch Med, Dept Internal Med, Las Vegas, NV USA
[6] Monash Univ, Fac Med Nursing & Hlth Sci, Sch Translat Med, Melbourne, Vic, Australia
[7] Alfred Hlth, Melbourne Sexual Hlth Ctr, Artificial Intelligence & Modelling Epidemiol Prog, Carlton, Vic, Australia
关键词
visual impairment; China; middle-aged and elderly adults; machine learning; prediction model; VISION IMPAIRMENT;
D O I
10.2196/59810
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Background: Visual impairment (VI) is a prevalent global health issue, affecting over 2.2 billion people worldwide, with nearly half of the Chinese population aged 60 years and older being affected. Early detection of high-risk VI is essential for preventing irreversible vision loss among Chinese middle-aged and older adults. While machine learning (ML) algorithms exhibit significant predictive advantages, their application in predicting VI risk among the general middle-aged and older adult population in China remains limited. Objective: This study aimed to predict VI and identify its determinants using ML algorithms. Methods: We used 19,047 participants from 4 waves of the China Health and Retirement Longitudinal Study (CHARLS) that were conducted between 2011 and 2018. To envisage the prevalence of VI, we generated a geographical distribution map. Additionally, we constructed a model using indicators of a self-reported questionnaire, a physical examination, and blood biomarkers as predictors. Multiple ML algorithms, including gradient boosting machine, distributed random forest, the generalized linear model, deep learning, and stacked ensemble, were used for prediction. We plotted receiver operating characteristic and calibration curves to assess the predictive performance. Variable importance analysis was used to identify key predictors. Results: Among all participants, 33.9% (6449/19,047) had VI. Qinghai, Chongqing, Anhui, and Sichuan showed the highest VI rates, while Beijing and Xinjiang had the lowest. The generalized linear model, gradient boosting machine, and stacked ensemble achieved acceptable area under curve values of 0.706, 0.710, and 0.715, respectively, with the stacked ensemble performing best. Key predictors included hearing impairment, self-expectation of health status, pain, age, hand grip strength, depression, night sleep duration, high-density lipoprotein cholesterol, and arthritis or rheumatism. Conclusions: Nearly one-third of middle-aged and older adults in China had VI. The prevalence of VI shows regional variations, but there are no distinct east-west or north-south distribution differences. ML algorithms demonstrate accurate predictive capabilities for VI. The combination of prediction models and variable importance analysis provides valuable insights for the early identification and intervention of VI among Chinese middle-aged and older adults.
引用
收藏
页数:11
相关论文
共 48 条
[1]   Discrimination and Calibration of Clinical Prediction Models Users' Guides to the Medical Literature [J].
Alba, Ana Carolina ;
Agoritsas, Thomas ;
Walsh, Michael ;
Hanna, Steven ;
Iorio, Alfonso ;
Devereaux, P. J. ;
McGinn, Thomas ;
Guyatt, Gordon .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (14) :1377-1384
[2]   Perspective Toward Machine Learning Implementation in Pediatric Medicine: Mixed Methods Study [J].
Alexander, Natasha ;
Aftandilian, Catherine ;
Guo, Lin Lawrence ;
Plenert, Erin ;
Posada, Jose ;
Fries, Jason ;
Fleming, Scott ;
Johnson, Alistair ;
Shah, Nigam ;
Sung, Lillian .
JMIR MEDICAL INFORMATICS, 2022, 10 (11)
[3]   Vision Impairment and Psychosocial Function in US Adults [J].
Almidani, Louay ;
Miller, Rhonda ;
Varadaraj, Varshini ;
Mihailovic, Aleksandra ;
Swenor, Bonnielin K. ;
Ramulu, Pradeep Y. .
JAMA OPHTHALMOLOGY, 2024, 142 (04) :283-291
[4]   Neurofibromatosis Type-2 presenting with vision impairment [J].
Alshoabi, Sultan Abdulwadoud .
PAKISTAN JOURNAL OF MEDICAL SCIENCES, 2023, 39 (02) :611-615
[5]  
[Anonymous], 2023, Blindness and vision Impairment
[6]   Predicting and elucidating the etiology of fatty liver disease: A machine learning modeling and validation study in the IMI DIRECT cohorts [J].
Atabaki-Pasdar, Naeimeh ;
Ohlsson, Mattias ;
Vinuela, Ana ;
Frau, Francesca ;
Pomares-Millan, Hugo ;
Haid, Mark ;
Jones, Angus G. ;
Thomas, E. Louise ;
Koivula, Robert W. ;
Kurbasic, Azra ;
Mutie, Pascal M. ;
Fitipaldi, Hugo ;
Fernandez, Juan ;
Dawed, Adem Y. ;
Giordano, Giuseppe N. ;
Forgie, Ian M. ;
McDonald, Timothy J. ;
Rutters, Femke ;
Cederberg, Henna ;
Chabanova, Elizaveta ;
Dale, Matilda ;
Masi, Federico De ;
Thomas, Cecilia Engel ;
Allin, Kristine H. ;
Hansen, Tue H. ;
Heggie, Alison ;
Hong, Mun-Gwan ;
Elders, Petra J. M. ;
Kennedy, Gwen ;
Kokkola, Tarja ;
Pedersen, Helle Krogh ;
Mahajan, Anubha ;
McEvoy, Donna ;
Pattou, Francois ;
Raverdy, Violeta ;
Haussler, Ragna S. ;
Sharma, Sapna ;
Thomsen, Henrik S. ;
Vangipurapu, Jagadish ;
Vestergaard, Henrik ;
't Hart, Leen M. ;
Adamski, Jerzy ;
Musholt, Petra B. ;
Brage, Soren ;
Brunak, Soren ;
Dermitzakis, Emmanouil ;
Frost, Gary ;
Hansen, Torben ;
Laakso, Markku ;
Pedersen, Oluf .
PLOS MEDICINE, 2020, 17 (06)
[7]   Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study [J].
Bourne, Rupert R. A. ;
Steinmetz, Jaimie D. ;
Flaxman, Seth ;
Briant, Paul Svitil ;
Taylor, Hugh R. ;
Resnikoff, Serge ;
Casson, Robert James ;
Abdoli, Amir ;
Abu-Gharbieh, Eman ;
Afshin, Ashkan ;
Ahmadieh, Hamid ;
Akalu, Yonas ;
Alamneh, Alehegn Aderaw ;
Alemayehu, Wondu ;
Alfaar, Ahmed Samir ;
Alipour, Vahid ;
Anbesu, Etsay Woldu ;
Androudi, Sofia ;
Arabloo, Jalal ;
Arditi, Aries ;
Asaad, Malke ;
Bagli, Eleni ;
Baig, Atif Amin ;
Barnighausen, Till Winfried ;
Parodi, Maurizio Battaglia ;
Bhagavathula, Akshaya Srikanth ;
Bhardwaj, Nikha ;
Bhardwaj, Pankaj ;
Bhattacharyya, Krittika ;
Bijani, Ali ;
Bikbov, Mukharram ;
Bottone, Michele ;
Braithwaite, Tasanee ;
Bron, Alain M. ;
Butt, Zahid A. ;
Cheng, Ching-Yu ;
Chu, Dinh-Toi ;
Cicinelli, Maria Vittoria ;
Coelho, Joao M. ;
Dagnew, Baye ;
Dai, Xiaochen ;
Dana, Reza ;
Dandona, Lalit ;
Dandona, Rakhi ;
Del Monte, Monte A. ;
Deva, Jenny P. ;
Diaz, Daniel ;
Djalalinia, Shirin ;
Dreer, Laura E. ;
Ehrlich, Joshua R. .
LANCET GLOBAL HEALTH, 2021, 9 (02) :E130-E143
[8]  
Brier G.W., 1950, MONTHLY WEATHER REV, V78, P1, DOI [DOI 10.1175/1520-0493(1950)078ANDLT
[9]  
0001:VOFEITANDGT
[10]  
2.0.CO