New perspectives on structural health monitoring using unsupervised quantum machine learning

被引:0
作者
Alves, Victor Higino Meneguitte [1 ]
Gomes, Raphael Fortes Infante [2 ]
Cury, Alexandre [1 ]
机构
[1] Univ Juiz De Fora, Fac Engn, Grad Program Civil Engn, Juiz De Fora, MG, Brazil
[2] Fed Univ Latin Amer Integrat, Foz Do Iguacu, Parana, Brazil
关键词
Structural Health Monitoring; Quantum Machine Learning; Damage detection; Quantum Computing; Unsupervised learning; OPTIMIZATION;
D O I
10.1016/j.ymssp.2025.112489
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This study presents a novel approach using unsupervised Quantum Machine Learning (QML) for Structural Health Monitoring (SHM). The proposed methodology involves extracting features from raw acceleration signals and encoding them into quantum states for a subsequent analysis in a quantum classifier. By training the model with known intact scenarios, an anomaly score function is evaluated to identify deviations from normal behavior aiming to detect potential structural anomalies. The framework is validated through experimental applications on a twostory laboratory frame and on a real-scale railway bridge, demonstrating encouraging results in anomaly detection, localization, and quantification. Through experimentation and numerical analyses, this study advances on the edge of SHM research, laying the foundation for future exploration at the intersection of Quantum Computing and Civil Engineering.
引用
收藏
页数:30
相关论文
共 50 条
  • [31] Civil structural health monitoring and machine learning: a comprehensive review
    Anjum, Asraar
    Hrairi, Meftah
    Aabid, Abdul
    Yatim, Norfazrina
    Ali, Maisarah
    FRATTURA ED INTEGRITA STRUTTURALE-FRACTURE AND STRUCTURAL INTEGRITY, 2024, (69): : 43 - 59
  • [32] One More Reason to Reject Manuscript about Machine Learning for Structural Health Monitoring
    Gunawan, Fergyanto E.
    Soewito, Benfano
    Surantha, Nico
    Mauritsius, Tuga
    2018 INDONESIAN ASSOCIATION FOR PATTERN RECOGNITION INTERNATIONAL CONFERENCE (INAPR), 2018, : 62 - 66
  • [33] Quantum Machine Learning: Perspectives in Cybersecurity
    Pastorello, Davide
    COMPUTER SAFETY, RELIABILITY, AND SECURITY. SAFECOMP 2024 WORKSHOPS, 2024, 14989 : 266 - 274
  • [34] Machine Learning-Based Structural Health Monitoring Using RFID for Harsh Environmental Conditions
    Zhao, Aobo
    Sunny, Ali Imam
    Li, Li
    Wang, Tengjiao
    ELECTRONICS, 2022, 11 (11)
  • [35] Evaluation of machine learning techniques for structural health monitoring using ultrasonic guided waves under varying temperature conditions
    Abbassi, Abderrahim
    Romgens, Niklas
    Tritschel, Franz Ferdinand
    Penner, Nikolai
    Rolfes, Raimund
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (02): : 1308 - 1325
  • [36] Deep machine learning for structural health monitoring on ship hulls using acoustic emission method
    Karvelis, Petros
    Georgoulas, George
    Kappatos, Vassilios
    Stylios, Chrysostomos
    SHIPS AND OFFSHORE STRUCTURES, 2021, 16 (04) : 440 - 448
  • [37] Damage detection for structural health monitoring using reinforcement and imitation learning
    Khazaeli, Shervin
    Goulet, James-A.
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2024,
  • [38] Improving feature extraction via time series modeling for structural health monitoring based on unsupervised learning methods
    Entezami A.
    Shariatmadar H.
    Karamodin A.
    Scientia Iranica, 2020, 27 (3 A) : 1001 - 1018
  • [39] Fast unsupervised learning methods for structural health monitoring with large vibration data from dense sensor networks
    Entezami, Alireza
    Shariatmadar, Hashem
    Mariani, Stefano
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2020, 19 (06): : 1685 - 1710
  • [40] Machine Learning Algorithms in Civil Structural Health Monitoring: A Systematic Review
    Flah, Majdi
    Nunez, Itzel
    Ben Chaabene, Wassim
    Nehdi, Moncef L.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (04) : 2621 - 2643