On uniform consistency of nonparametric estimators smoothed by the gamma kernel

被引:1
作者
Funke, Benedikt [1 ]
Hirukawa, Masayuki [2 ]
机构
[1] TH Koln Univ Appl Sci, Inst Insurance Studies, Gustav Heinemann Ufer 54, D-50968 Cologne, Germany
[2] Ryukoku Univ, Fac Econ, 67 Tsukamoto-cho,Fukakusa,Fushimi Ku, Kyoto 6128577, Japan
基金
日本学术振兴会;
关键词
Boundary bias; Density derivative estimation; Density estimation; Gamma kernel; Nonparametric regression estimation; Uniform convergence; DENSITY-ESTIMATION; CONVERGENCE RATES;
D O I
10.1007/s10463-024-00923-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper documents a set of uniform consistency results with rates for nonparametric density and regression estimators smoothed by the gamma kernel having support on the nonnegative real line. It is known that this kernel can well calibrate the shapes of 'cost' distributions that are characterized by a sharp peak in the vicinity of the origin and a long right tail. In this paper, weak and strong uniform consistency and corresponding convergence rates of gamma kernel estimators are explored in a multivariate framework. Our analysis is built on compact sets expanding to the nonnegative orthant and general sequences of smoothing parameters. The results are useful for asymptotic analysis of two-step semiparametric estimation using a first-step kernel estimate as a plug-in.
引用
收藏
页码:459 / 489
页数:31
相关论文
共 36 条
[1]   ON BANDWIDTH VARIATION IN KERNEL ESTIMATES - A SQUARE ROOT LAW [J].
ABRAMSON, IS .
ANNALS OF STATISTICS, 1982, 10 (04) :1217-1223
[2]   On Ramanujan's double inequality for the gamma function [J].
Alzer, H .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2003, 35 :601-607
[3]   Minimax properties of Dirichlet kernel density estimators [J].
Bertin, Karine ;
Genest, Christian ;
Klutchnikoff, Nicolas ;
Ouimet, Frederic .
JOURNAL OF MULTIVARIATE ANALYSIS, 2023, 195
[4]   Nonparametric density estimation for multivariate bounded data [J].
Bouezmarni, Taoufik ;
Rombouts, Jeroen V. K. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (01) :139-152
[5]   Limit theorems for nonparametric conditional U-statistics smoothed by asymmetric kernels [J].
Bouzebda, Salim ;
Nezzal, Amel ;
Elhattab, Issam .
AIMS MATHEMATICS, 2024, 9 (09) :26195-26282
[6]  
Chakraborty AK, 2013, SANKHYA SER B, V75, P1
[7]   Probability density function estimation using gamma kernels [J].
Chen, SX .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2000, 52 (03) :471-480
[8]   Local linear smoothers using asymmetric kernels [J].
Chen, SX .
ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2002, 54 (02) :312-323
[9]   Beta kernel estimators for density functions [J].
Chen, SX .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1999, 31 (02) :131-145
[10]   On Bayesian inference for generalized multivariate gamma distribution [J].
Das, Sourish ;
Dey, Dipak K. .
STATISTICS & PROBABILITY LETTERS, 2010, 80 (19-20) :1492-1499