Factoring sparse polynomials fast

被引:0
作者
Demin, Alexander [1 ]
van der Hoeven, Joris [2 ]
机构
[1] HSE Univ, Fac Comp Sci, Pokrovsky Blvd 11c4, Moscow 109028, Russia
[2] Inst Polytech Paris, CNRS, Ecole Polytech, CNRS,Lab Informat,Ecole Polytech LIX,UMR 7161, Batiment Alan Turing,CS35003,1 Rue Honore Estienne, F-91120 Palaiseau, France
关键词
Sparse polynomial; Factorization; Gcd; Sparse interpolation; Probabilistic algorithm; Hensel lifting; MULTIVARIATE POLYNOMIALS; FACTORIZATION; ALGORITHMS; BIVARIATE; MULTIPLICATION; IRREDUCIBILITY; COMPLEXITY;
D O I
10.1016/j.jco.2025.101934
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider a sparse polynomial in several variables given explicitly as a sum of non-zero terms with coefficients in an effective field. In this paper, we present several algorithms for factoring such polynomials and related tasks (such as gcd computation, square- free factorization, content-free factorization, and root extraction). Our methods are all based on sparse interpolation, but follow two main lines of attack: iteration on the number of variables and more direct reductions to the univariate or bivariate case. We present detailed probabilistic complexity bounds in terms of the complexity of sparse interpolation and evaluation. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:38
相关论文
共 109 条
[1]  
ABUSALEM FATIMA., 2004, Proceedings of the 2004 international symposium on Symbolic and algebraic computation (ISSAC 2004), P4
[2]  
Aho A. V., 1975, SIAM Journal on Computing, V4, P533, DOI 10.1137/0204045
[3]  
Alberich-Carraminana M., 2022, Technical Report, DOI [10.48550/arXiv.2207.02139, DOI 10.48550/ARXIV.2207.02139]
[4]  
Belabas K., 2009, J. Theor. Nr. Bordx., V21, P15
[5]  
Ben-Or M., 1988, Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, P301, DOI 10.1145/62212.62241
[6]  
BERLEKAM.ER, 1967, AT&T TECH J, V46, P1853
[7]   FACTORING POLYNOMIALS OVER LARGE FINITE FIELDS [J].
BERLEKAMP, ER .
MATHEMATICS OF COMPUTATION, 1970, 24 (111) :713-+
[8]  
Bernardin Laurent, 1999, Factorization of multivariate polynomials over finite fields
[9]  
Bernstein D.J., 2004, Scaled remainder trees
[10]  
Bertini E., 1923, Introduzione alla geometria proiettiva degli iperspazi con appendice sulle curve algebriche e loro singolarita