Machine-Learning-Based Path Loss Prediction for In-Cabin Wireless Networks

被引:0
作者
Moraitis, Nektarios [1 ]
Tsipi, Lefteris [2 ]
Vouyioukas, Demosthenes [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Sch Elect & Comp Engn, Athens, Greece
[2] Univ Aegean, Dept Informat & Commun Syst Engn, Samos 83200, Greece
[3] Univ Piraeus, Dept Digital Syst, Piraeus 18534, Greece
来源
2024 IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING FOR COMMUNICATION AND NETWORKING, ICMLCN 2024 | 2024年
关键词
aircraft environment; channel modeling; machine learning; path loss;
D O I
10.1109/ICMLCN59089.2024.10624765
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This article examines the performance of machine learning (ML) techniques for accurate path loss predictions inside aircrafts. An artificial neural network (ANN) and support vector regression (SVR) methods are introduced and assessed. Both algorithms are trained, validated and tested with measurements collected inside a long-range Airbus aircraft at three different frequencies. According to the statistical analysis both methods adapt very well to the measured data, delivering low root-mean-square errors, being 1.5 and 1.9 dB for ANN and SVR models, respectively. In any case, the ANN method exhibits better performance in predicting accurately path loss. Finally, the results verified that the appropriateness of the applied ML techniques is much better than that of conventional empirical models, thus forecasting path loss with remarkable efficacy.
引用
收藏
页码:393 / 398
页数:6
相关论文
共 24 条
[1]   A UHF Path Loss Model Using Learning Machine for Heterogeneous Networks [J].
Ayadi, M. ;
Ben Zineb, A. ;
Tabbane, S. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (07) :3675-3683
[2]  
Chee K. L., 2009, 2009 IEEE 70 VEH TEC, P1
[3]   Characterization of UWB Channel Impulse Responses Within the Passenger Cabin of a Boeing 737-200 Aircraft [J].
Chiu, Simon ;
Chuang, James ;
Michelson, David G. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2010, 58 (03) :935-945
[4]   Operating an In-Cabin Femto-Cellular System Within a Given LTE Cellular Network [J].
Cogalan, Tezcan ;
Videv, Stefan ;
Haas, Harald .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (08) :7677-7689
[5]  
Constantinou P., 2008, P IEEE 68 VEH TECHN, P1
[6]   Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks [J].
Ghosh, Amitava ;
Thomas, Timothy A. ;
Cudak, Mark C. ;
Ratasuk, Rapeepat ;
Moorut, Prakash ;
Vook, Frederick W. ;
Rappaport, Theodore S. ;
MacCartney, George R., Jr. ;
Sun, Shu ;
Nie, Shuai .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1152-1163
[7]   The Road Towards 6G: A Comprehensive Survey [J].
Jiang, Wei ;
Han, Bin ;
Habibi, Mohammad Asif ;
Schotten, Hans Dieter .
IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2021, 2 :334-366
[8]   Machine Learning-Based Radio Coverage Prediction in Urban Environments [J].
Mohammadjafari, Sanaz ;
Roginsky, Sophie ;
Kavurmacioglu, Emir ;
Cevik, Mucahit ;
Ethier, Jonathan ;
Bener, Ayse Basar .
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04) :2117-2130
[9]   Performance evaluation of machine learning methods for path loss prediction in rural environment at 3.7 GHz [J].
Moraitis, Nektarios ;
Tsipi, Lefteris ;
Vouyioukas, Demosthenes ;
Gkioni, Angelina ;
Louvros, Spyridon .
WIRELESS NETWORKS, 2021, 27 (06) :4169-4188
[10]   Propagation Measurements and Comparison with EM Techniques for In-Cabin Wireless Networks [J].
Moraitis, Nektarios ;
Constantinou, Philip ;
Perez Fontan, Fernando ;
Valtr, Pavel .
EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2009,