Dual Data and Mechanism Based Prediction Model for Photovoltaic Modules

被引:0
作者
Kuang, Zhaoqi [1 ]
Ma, Changjiang [1 ]
Zhang, Hexu [2 ]
Li, Lin [3 ]
Li, Yun [1 ]
机构
[1] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China
[2] Univ Elect Sci & Technol China, Glasgow Coll, Chengdu 611731, Peoples R China
[3] Qingdao Agr Univ, Sch Sci & Informat Sci, Qingdao 266109, Peoples R China
来源
2024 29TH INTERNATIONAL CONFERENCE ON AUTOMATION AND COMPUTING, ICAC 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Explainable artificial intelligence; Convolutional neural networks; Long short-term memory; Photovoltaic power prediction; System modelling; SOLAR; IRRADIANCE;
D O I
10.1109/ICAC61394.2024.10718739
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate photovoltaic power prediction is of great significance for the stability and safety of the power grid, but present methods lack explainability or accuracy. This paper develops a dual data and mechanism based method for photovoltaic power prediction. Its model combines physical a-priori knowledge of the photovoltaic modules for explainability and data-driven fitting for accuracy. This method is based on the single diode model and its model parameters are adjusted using a hybrid model based on convolutional neural networks and long short-term memory (CNN-LSTM). We evaluate this model by conducting experiments on open-source photovoltaic dataset. The results demonstrate the effectiveness of this dual data and mechanism driven model.
引用
收藏
页码:305 / 310
页数:6
相关论文
共 21 条
[1]   A hybrid deep learning method for an hour ahead power output forecasting of three different photovoltaic systems [J].
Akhter, Muhammad Naveed ;
Mekhilef, Saad ;
Mokhlis, Hazlie ;
Ali, Raza ;
Usama, Muhammad ;
Muhammad, Munir Azam ;
Khairuddin, Anis Salwa Mohd .
APPLIED ENERGY, 2022, 307
[2]   MARKOV-PROCESSES AND FOURIER-ANALYSIS AS A TOOL TO DESCRIBE AND SIMULATE DAILY SOLAR IRRADIANCE [J].
AMATO, U ;
ANDRETTA, A ;
BARTOLI, B ;
COLUZZI, B ;
CUOMO, V ;
FONTANA, F ;
SERIO, C .
SOLAR ENERGY, 1986, 37 (03) :179-194
[3]   Real time implementation of Demand Side Management scheme for IoT enabled PV integrated smart residential building [J].
Balakumar, P. ;
Vinopraba, T. ;
Chandrasekaran, K. .
JOURNAL OF BUILDING ENGINEERING, 2022, 52
[4]   Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation [J].
Chen, Xu ;
Xu, Bin ;
Mei, Congli ;
Ding, Yuhan ;
Li, Kangji .
APPLIED ENERGY, 2018, 212 :1578-1588
[5]   Comparison of different physical models for PV power output prediction [J].
Dolara, Alberto ;
Leva, Sonia ;
Manzolini, Giampaolo .
SOLAR ENERGY, 2015, 119 :83-99
[6]   Deep Power Forecasting Model for Building Attached Photovoltaic System [J].
Du, Liufeng ;
Zhang, Linghua ;
Tian, Xiyan .
IEEE ACCESS, 2018, 6 :52639-52651
[7]   Day-ahead power forecasting in a large-scale photovoltaic plant based on weather classification using LSTM [J].
Gao, Mingming ;
Li, Jianjing ;
Hong, Feng ;
Long, Dongteng .
ENERGY, 2019, 187
[8]   Optimization of combined cooling, heating, and power systems for rural scenario based on a two-layer optimization model [J].
Gao, Yuefen ;
Deng, Yu ;
Yao, Wenqi ;
Hang, Yang .
JOURNAL OF BUILDING ENGINEERING, 2022, 60
[9]   Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM [J].
Huang, Xiaoqiao ;
Li, Qiong ;
Tai, Yonghang ;
Chen, Zaiqing ;
Liu, Jun ;
Shi, Junsheng ;
Liu, Wuming .
ENERGY, 2022, 246
[10]   Hybrid deep neural model for hourly solar irradiance forecasting [J].
Huang, Xiaoqiao ;
Li, Qiong ;
Tai, Yonghang ;
Chen, Zaiqing ;
Zhang, Jun ;
Shi, Junsheng ;
Gao, Bixuan ;
Liu, Wuming .
RENEWABLE ENERGY, 2021, 171 :1041-1060