Bifurcation and Exact Solutions of a Concatenation Physical Model

被引:0
作者
Jin, Xianghua [1 ]
Chen, Guanrong [2 ]
Li, Jibin [1 ,3 ]
机构
[1] Huaqiao Univ, Sch Math Sci, Quanzhou 362021, Fujian, Peoples R China
[2] City Univ Hong Kong, Dept Elect Engn, Hong Kong 999077, Peoples R China
[3] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2025年 / 35卷 / 01期
关键词
Singular nonlinear traveling wave equation; bifurcation; solitary wave; periodic wave; kink and anti-kink wave; peakon; periodic peakon; compacton; SOLITONS;
D O I
10.1142/S0218127425500117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To find the exact explicit solution of the concatenation model, the corresponding differential system of the amplitude component is used, which is a planar dynamical system with a singular straight line. In this paper, by using the techniques from dynamical systems and singular traveling wave theory developed by Li and Chen [2007], its corresponding traveling wave system is solved and analyzed, obtaining the corresponding phase portraits and showing the dynamical behavior of the amplitude component. Under different parameter conditions, exact explicit solitary wave solutions, periodic wave solutions, kink and anti-kink wave solutions, compacton solutions, as well as peakons and periodic peakons, are found explicitly.
引用
收藏
页数:15
相关论文
共 16 条
  • [1] Byrd P. F., 1971, Handbook of Elliptic Integrals for Engineers and Scientists
  • [2] Nonlinear waves and solitons in physical systems
    Camassa, R
    Hyman, JM
    Luce, BP
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1998, 123 (1-4) : 1 - 20
  • [3] AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS
    CAMASSA, R
    HOLM, DD
    [J]. PHYSICAL REVIEW LETTERS, 1993, 71 (11) : 1661 - 1664
  • [4] Camassa R., 1994, ADV APPL MECH, V31, P1, DOI [10.1016/S0065-2156(08)70254-0, DOI 10.1016/S0065-2156(08)70254-0]
  • [5] A new integrable equation with peakon solutions
    Degasperis, A
    Holm, DD
    Hone, ANW
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 2002, 133 (02) : 1463 - 1474
  • [6] Degasperis A., 1999, SYMMETRY PERTURBATIO, P23
  • [7] ON A CLASS OF PHYSICALLY IMPORTANT INTEGRABLE EQUATIONS
    FOKAS, AS
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1995, 87 (1-4) : 145 - 150
  • [8] Li J., 2013, Singular Nonlinear Traveling Wave Equations: Bifurcations and Exact Solutions
  • [9] LI JB, 2016, INT J BIFURCAT CHAOS, V26
  • [10] On a class of singular nonlinear traveling wave equations
    Li, Jibin
    Chen, Guanrong
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11): : 4049 - 4065