Redox-active inverse crowns for small molecule activation

被引:0
作者
Maurer, Johannes [1 ]
Klerner, Lukas [1 ]
Mai, Jonathan [1 ]
Stecher, Hannah [1 ]
Thum, Stefan [1 ]
Morasch, Michael [1 ]
Langer, Jens [1 ]
Harder, Sjoerd [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Inorgan & Organometall Chem, Erlangen, Germany
关键词
BASIS-SETS; MAGNESIUM; N2O; METALATION; REACTIVITY; CHEMISTRY; REAGENTS; BINDING; OXYGEN;
D O I
10.1038/s41557-024-01724-5
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Cyclic crown ethers bind metal cations to form host-guest complexes. Lesser-known inverse crowns are rings of metal cations that encapsulate anionic entities, enabling multiple deprotonation reactions, often with unusual selectivity. Self-assembly of a cycle of metal cations around the multiply charged carbanion during the deprotonation reaction is the driving force for this reactivity. Here we report the synthesis of a pre-assembled inverse crown featuring Na+ cations and a redox-active Mg0 centre. Reduction of N2O followed by N2 release and subsequent encapsulation of O2- demonstrates its reduce-and-capture functionality. Calculations reveal that this essentially barrier-free process involves a rare N2O2- dianion, embedded in the metalla-cycle. The inverse crown can adapt itself for binding larger anions like N2O22- through a self-reorganization process involving ring expansion. The redox-active inverse crown combines the advantages of a strong reducing agent with anion stabilizing properties provided by the ring of metal cations, leading to high reactivity and selectivity.
引用
收藏
页码:703 / 709
页数:10
相关论文
共 50 条
[21]   Rare-earth metal complexes with redox-active formazanate ligands [J].
Jin, Da ;
Sun, Xiaofei ;
Hinz, Alexander ;
Roesky, Peter W. .
DALTON TRANSACTIONS, 2022, 51 (13) :5218-5226
[22]   Ytterbium and Europium Complexes of Redox-Active Ligands: Searching for Redox Isomerism [J].
Fedushkin, Igor L. ;
Yambulatov, Dmitriy S. ;
Skatova, Alexandra A. ;
Baranov, Evgeny V. ;
Demeshko, Serhiy ;
Bogomyakov, Artem S. ;
Ovcharenko, Victor I. ;
Zueva, Ekaterina M. .
INORGANIC CHEMISTRY, 2017, 56 (16) :9825-9833
[23]   A singly bonded gallanediyl with redox-active and redox-inert reactivity [J].
Schreiner, Simon H. F. ;
Rueffer, Tobias ;
Kretschmer, Robert .
NATURE SYNTHESIS, 2025, 4 (01) :67-74
[24]   Molecular and Electronic Structures and Single-Molecule Magnet Behavior of Tris(thioether)-Iron Complexes Containing Redox-Active α-Diimine Ligands [J].
Wang, Peng ;
Saber, Mohamed R. ;
VanNatta, Peter E. ;
Yap, Glenn P. A. ;
Popescu, Codrina, V ;
Scarborough, Christopher C. ;
Kieber-Emmons, Matthew T. ;
Dunbar, Kim R. ;
Riordan, Charles G. .
INORGANIC CHEMISTRY, 2021, 60 (09) :6480-6491
[25]   The spectroelectrochemical behaviour of redox-active manganese salen complexes [J].
Solomon, Marcello B. ;
Chan, Bun ;
Kubiak, Clifford P. ;
Jolliffe, Katrina A. ;
D'Alessandro, Deanna M. .
DALTON TRANSACTIONS, 2019, 48 (11) :3704-3713
[26]   Synthesis and Reactions of a Redox-Active α-Diimine Aluminum Complex [J].
Li, Jianfeng ;
Zhang, Kun ;
Huang, Hanmin ;
Yu, Ao ;
Hu, Hongfan ;
Cui, Haiyan ;
Cui, Chunming .
ORGANOMETALLICS, 2013, 32 (06) :1630-1635
[27]   Redox-active ligands as a challenge for electronic structure methods [J].
Rastetter, Ursula ;
von Wangelin, Axel Jacobi ;
Herrmann, Carmen .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2023, 44 (03) :468-479
[28]   Oxidation of Organic Molecules with a Redox-Active Guanidine Catalyst [J].
Wild, Ute ;
Schoen, Florian ;
Himmel, Hans-Joerg .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (51) :16410-16413
[29]   Iodophenylsulfonates and Iodobenzoates as Redox-Active Supporting Electrolytes for Electrosynthesis [J].
Roesel, Arend F. ;
Broese, Timo ;
Majek, Michal ;
Francke, Robert .
CHEMELECTROCHEM, 2019, 6 (16) :4229-4237
[30]   Neocuproine as a Redox-Active Ligand Platform on Iron and Cobalt [J].
Jesse, Kate A. ;
Filatov, Alexander S. ;
Xie, Jiaze ;
Anderson, John S. .
INORGANIC CHEMISTRY, 2019, 58 (14) :9057-9066