ON A NONLOCAL p(x)-LAPLACIAN DIRICHLET PROBLEM INVOLVING SEVERAL CRITICAL SOBOLEV-HARDY EXPONENTS
被引:1
作者:
Costa, Augusto Cesar dos Reis
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Para UFPA, Inst Ciencias Exatas & Nat, R Augusto Correa,01 Guama, BR-66075110 Belem, PA, BrazilUniv Fed Para UFPA, Inst Ciencias Exatas & Nat, R Augusto Correa,01 Guama, BR-66075110 Belem, PA, Brazil
Costa, Augusto Cesar dos Reis
[1
]
da Silva, Ronaldo Lopes
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Para UFPA, Inst Ciencias Exatas & Nat, R Augusto Correa,01 Guama, BR-66075110 Belem, PA, BrazilUniv Fed Para UFPA, Inst Ciencias Exatas & Nat, R Augusto Correa,01 Guama, BR-66075110 Belem, PA, Brazil
da Silva, Ronaldo Lopes
[1
]
机构:
[1] Univ Fed Para UFPA, Inst Ciencias Exatas & Nat, R Augusto Correa,01 Guama, BR-66075110 Belem, PA, Brazil
generalized Lebesgue-Sobolev spaces;
p ( x )-Laplacian nonlo cal operator;
Sobolev-Hardy critical exponents;
concentration-compactness principle for critical Sobolev-Hardy exponent;
fountain theorem;
SIGN-CHANGING SOLUTIONS;
ELLIPTIC PROBLEMS;
SPACES;
EXISTENCE;
EQUATIONS;
SYSTEMS;
D O I:
10.7494/OpMath.2024.44.6.789
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The aim of this work is to present a result of multiplicity of solutions, in generalized Sobolev spaces, for a non-local elliptic problem with p(x)-Laplace operator containing k distinct critical Sobolev-Hardy exponents combined with singularity points {M(psi(u))(-triangle(p(x))u+|u|p((x)-2)u) =& sum;(k)(i=1) h(i)(x)|u|p(& lowast;s)i(x)(-2)u/|x|(si)(x)+f(x,u) in ohm, {u= 0 on partial derivative ohm, where ohm subset of R-N is a bounded domain with 0 is an element of ohm and 1< p-<= p(x)<= p+< N. The real function M is bounded in[0,+infinity)and the functions hi(i= 1,...,k)and fare functions whose properties will be given later. To obtain the result we use the Lions' concentration-compactness principle for critical Sobolev-Hardy exponent in the space W-0(1,p(x))(ohm)due to Yu, Fu and Li, and the Fountain Theorem.