Low-Profile ESPAR Using Metamaterial-Inspired Structure

被引:2
作者
Jafargholi, Amir [1 ]
Safaei, Mahmood [2 ]
Fleury, Romain [1 ]
Tafazolli, Rahim [3 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Engn, Lab Wave Engn, CH-1015 Lausanne, Switzerland
[2] Univ Akron, Coll Engn & Polymer Sci, Comp Sci Dept, Akron, OH 44325 USA
[3] Univ Surrey, Inst Commun Syst, Guildford GU27XH, England
来源
IEEE OPEN JOURNAL OF ANTENNAS AND PROPAGATION | 2024年 / 5卷 / 06期
关键词
Magnetic resonance imaging; Dipole antennas; Loaded antennas; Magnetic confinement; Directive antennas; Wires; Impedance; Electronically steerable parasitic array radiator; loop antenna; capacitively-loaded loops; metamaterial-inspired; artificial magnetic conductor; reconfigurable antenna; beam steering; PARASITIC ARRAY RADIATOR; ANTENNA; REDUCTION; ALGORITHM; DESIGN;
D O I
10.1109/OJAP.2024.3426608
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the 3D nature of traditional Electronically Steerable Parasitic Array Radiators (ESPARs). Additionally, the required distance between the main radiator and the parasitic elements usually affects the antenna's electrical size and the frequency bandwidth. To overcome these issues, the cylindrical parasitic elements in conventional ESPARs are replaced with Metamaterial-inspired structures that mimic artificial magnetic conductors (AMC). The AMC is realized by a capacitively loaded loop (CLL). PIN diodes electrically control the CLL's behavior while radially loading a printed loop antenna. Switching ON/OFF the diodes changes the direction of the main lobe, resulting in a compact, single-layer, low-profile, and cost-effective structure. By replacing the PIN diodes with varactors, a dual-band and frequency-reconfigurable ESPAR are designed and implemented, which is not possible in traditional ESPAR structures.
引用
收藏
页码:1612 / 1622
页数:11
相关论文
共 31 条
[1]   Relay-Aided Wireless Sensor Network Discovery Algorithm for Dense Industrial IoT Utilizing ESPAR Antennas [J].
Ademaj, Fjolla ;
Rzymowski, Mateusz ;
Bernhard, Hans-Peter ;
Nyka, Krzysztof ;
Kulas, Lukasz .
IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (22) :16653-16665
[2]  
Balanis C.A., 2005, ANTENNA THEORY, V3rd
[3]   Low-Profile ESPAR Antenna for RSS-Based DoA Estimation in IoT Applications [J].
Burtowy, Mateusz ;
Rzymowski, Mateusz ;
Kulas, Lukasz .
IEEE ACCESS, 2019, 7 :17403-17411
[4]   Electronically Steerable Antennas for Future Heterogeneous Communication Networks: Review and Perspectives [J].
Chaloun, Tobias ;
Boccia, Luigi ;
Arnieri, Emilio ;
Fischer, Michael ;
Valenta, Vaclav ;
Fonseca, Nelson J. G. ;
Waldschmidt, Christian .
IEEE JOURNAL OF MICROWAVES, 2022, 2 (04) :545-581
[5]  
Jafargholi A, 2010, INT REV ELECTR ENG-I, V5, P2710
[6]   Mutual Coupling Reduction in an Array of Patch Antennas Using CLL Metamaterial Superstrate for MIMO Applications [J].
Jafargholi, Ali ;
Jafargholi, Amir ;
Choi, Jun H. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2019, 67 (01) :179-189
[7]   Miniaturisation of printed slot antennas using artificial magnetic conductors [J].
Jafargholi, Ali ;
Jafargholi, Amir .
IET MICROWAVES ANTENNAS & PROPAGATION, 2018, 12 (07) :1054-1059
[8]   Microstrip patch back radiation reduction using metamaterial superstrate [J].
Jafargholi, Amir ;
Jafargholi, Ali ;
Choi, Jun H. ;
Veysi, Mehdi ;
Soleimani, Ali .
IET MICROWAVES ANTENNAS & PROPAGATION, 2020, 14 (02) :158-164
[9]   Artificial Magnetic Conductor Loaded Monopole Antenna [J].
Jafargholi, Amir ;
Kamyab, Manouchehr ;
Veysi, Mehdi .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2010, 9 :211-214
[10]  
Jeong S, 2009, IEEE ANTENNAS PROP, P273