Influences of some families of error-correcting codes

被引:0
作者
Egan, Hailey [1 ]
Legrow, Jason T. [1 ]
Matthews, Gretchen L. [1 ]
Suliga, Jeff [1 ]
机构
[1] Virginia Tech, Blacksburg, VA 24061 USA
来源
INVOLVE, A JOURNAL OF MATHEMATICS | 2025年 / 18卷 / 02期
基金
美国国家科学基金会;
关键词
boolean functions; error-correcting codes;
D O I
10.2140/involve.2025.18.329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The ability of a linear error-correcting code to recover erasures is connected to influences of particular monotone Boolean functions. These functions provide insight into the role that particular coordinates play in a code's erasure repair capability. We consider directly the influences of coordinates of a code. We describe a family of codes, called codes with minimum disjoint support, for which all influences may be determined. As a consequence, we find influences of repetition codes and certain distinct weight codes. Computing influences is typically circumvented by appealing to the transitivity of the automorphism group of the code. Some of the codes considered here fail to meet the transitivity conditions required for these standard approaches, yet we can compute them directly.
引用
收藏
页码:329 / 349
页数:24
相关论文
共 9 条
[1]  
Ben-Or M., 1985, 26th Annual Symposium on Foundations of Computer Science (Cat. No.85CH2224-4), P408, DOI 10.1109/SFCS.1985.15
[2]   Minimal Binary Linear Codes [J].
Ding, Cunsheng ;
Heng, Ziling ;
Zhou, Zhengchun .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (10) :6536-6545
[3]  
Gil MI., 2018, EUR C MATH BERL 2016
[4]  
Haily A, 2015, Intelligent Information Management, V07, P80, DOI 10.4236/iim.2015.72008
[5]  
Kahn J., 1988, 29th Annual Symposium on Foundations of Computer Science (IEEE Cat. No.88CH2652-6), P68, DOI 10.1109/SFCS.1988.21923
[6]   Reed-Muller Codes Achieve Capacity on Erasure Channels [J].
Kudekar, Shrinivas ;
Kumar, Santhosh ;
Mondelli, Marco ;
Pfister, Henry D. ;
Sasoglu, Eren ;
Urbanke, Rudiger L. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) :4298-4316
[7]  
Kumar Santhosh, 2016, 2016 IEEE Information Theory Workshop (ITW), P241, DOI 10.1109/ITW.2016.7606832
[8]   A MATHEMATICAL THEORY OF COMMUNICATION [J].
SHANNON, CE .
BELL SYSTEM TECHNICAL JOURNAL, 1948, 27 (04) :623-656
[9]   How many weights can a linear code have? [J].
Shi, Minjia ;
Zhu, Hongwei ;
Sole, Patrick ;
Cohen, Gerard D. .
DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (01) :87-95