A Ratiometric Fluorescence Nano pH Biosensor for Live-Cell Imaging Using Cerasome

被引:0
作者
Zhang, Zhongqiao [1 ]
Luo, Xiaoshan [2 ]
Wang, Xuanbo [2 ]
Liu, Meng [3 ]
Yue, Xiuli [4 ]
Zheng, Zhaozhu [2 ]
机构
[1] Jiangnan Univ, Sch Food Sci & Technol, Wuxi 214122, Peoples R China
[2] Soochow Univ, Natl Engn Lab Modern Silk, Suzhou 215123, Peoples R China
[3] Soochow Univ, Suzhou Med Coll, Cyrus Tang Hematol Ctr, Collaborat Innovat Ctr Hematol, Suzhou 215123, Peoples R China
[4] Harbin Inst Technol, Sch Municipal & Environm Engn, Harbin 150001, Peoples R China
来源
BIOSENSORS-BASEL | 2025年 / 15卷 / 02期
关键词
ratiometric fluorescence; pH sensor; nanoparticles; cerasome; live cells; SOL-GEL; SENSORS; MATRIX; DYE;
D O I
10.3390/bios15020114
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The development of a robust and biocompatible pH-sensing platform is critical for monitoring intracellular processes and diagnosing diseases. Here, we present a smart ultrastable ratiometric fluorescence nano pH sensor based on silica-coated liposome nanoparticles (cerasome, 138.4 nm). The sensor integrates pH-sensitive dye, pyranine, within cerasome, achieving enhanced photostability, sensitivity, and biocompatibility. Its unique ratiometric design enables precise pH monitoring with minimal photobleaching and quenching, covering a linear detection range of pH 6.25-8.5. The hybrid nanoparticles exhibit high morphological stability, making them suitable for real-time intracellular pH measurement. This novel platform shows great promise for applications in cellular biology, disease diagnosis, and therapeutic monitoring, offering a versatile tool for biomedical research.
引用
收藏
页数:12
相关论文
共 43 条
  • [1] Placer L., Estevez L., Lavilla I., Pena-Pereira F., Bendicho C., Assessing citric acid-derived luminescent probes for pH and ammonia sensing: A comprehensive experimental and theoretical study, Anal. Chim. Acta, 1186, (2021)
  • [2] Khan M., Mukherjee K., Shoukat R., Huang D., A review on pH sensitive materials for sensors and detection methods, Microsyst. Technol, 23, pp. 4391-4404, (2017)
  • [3] Yoshida S., Miyake T., Yamamoto S., Furukawa S., Niiya T., Senba H., Kanzaki S., Yoshida O., Ishihara T., Koizumi M., Et al., Relationship between urine pH and abnormal glucose tolerance in a community-based study, J. Diabetes Investig, 9, pp. 769-775, (2018)
  • [4] Do M.H., Ngo H.H., Guo W., Chang S.W., Nguyen D.D., Pandey A., Sharma P., Varjani S., Nguyen T.A.H., Hoang N.B., A dual chamber microbial fuel cell based biosensor for monitoring copper and arsenic in municipal wastewater, Sci. Total Environ, 811, (2022)
  • [5] Khalid M.A.U., Kim Y.S., Ali M., Lee B.G., Cho Y.-J., Choi K.H., A lung cancer-on-chip platform with integrated biosensors for physiological monitoring and toxicity assessment, Biochem. Eng. J, 155, (2020)
  • [6] Zhu H., Fan J., Du J., Peng X., Fluorescent Probes for Sensing and Imaging within Specific Cellular Organelles, Acc. Chem. Res, 49, pp. 2115-2126, (2016)
  • [7] Patil S., Ghadi H., Ramgir N., Adhikari A., Rao V.R., Monitoring soil pH variation using Polyaniline/SU-8 composite film based conductometric microsensor, Sens. Actuators B Chem, 286, pp. 583-590, (2019)
  • [8] Gong J., Tanner M.G., Venkateswaran S., Stone J.M., Zhang Y., Bradley M., A hydrogel-based optical fibre fluorescent pH sensor for observing lung tumor tissue acidity, Anal. Chim. Acta, 1134, pp. 136-143, (2020)
  • [9] Srivastava P., Tavernaro I., Scholtz L., Genger C., Welker P., Schreiber F., Meyer K., Resch-Genger U., Dual color pH probes made from silica and polystyrene nanoparticles and their performance in cell studies, Sci. Rep, 13, (2023)
  • [10] Chen X., Sun X.K., Xu W., Pan G.C., Zhou D.L., Zhu J.Y., Wang H., Bai X., Dong B., Song H.W., Ratiometric photoluminescence sensing based on Ti<sub>3</sub>C<sub>2</sub> MXene quantum dots as an intracellular pH sensor, Nanoscale, 10, pp. 1111-1118, (2018)