Robust vision-based estimation of structural parameters using Kalman filtering

被引:0
作者
Mazzanti, Lorenzo [1 ,2 ,3 ]
De Gregoriis, Daniel [1 ,2 ]
Willems, Thijs [1 ,3 ]
Vanpaemel, Simon [1 ,3 ]
Vivet, Mathijs [1 ,2 ]
Naets, Frank [1 ,3 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300, B-3001 Leuven, Belgium
[2] Siemens Digital Ind Software, Interleuvenlaan 68, B-3001 Leuven, Belgium
[3] Flanders Make KU Leuven, B-3001 Leuven, Belgium
关键词
Virtual sensing; Kalman filter; State estimation; Constrained estimation; Parameter identification; FORCE IDENTIFICATION; STATE ESTIMATION; MULTIBODY MODELS; OBSERVABILITY; SYSTEMS; FIELD;
D O I
10.1016/j.ymssp.2025.112480
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This contribution introduces the Generalized Augmented MANifold Differential Algebraic Extended Kalman Filter (GAMANDA-EKF), a novel Kalman filter-based methodology for state- input-parameter estimation for structures modelled as multibody systems described by differential algebraic equations. The proposed Kalman filter allows for exact equality and inequality constraint satisfaction and consistent error covariance propagation, without requiring a reformulation of the system equations. In addition to the enforcement of the equality and inequality constraints on the a-posteriori estimated system state with a constrained optimization approach, the estimation error covariance matrix is projected on the constraint manifold as well. This results in increased robustness and stability. Numerical and experimental validation cases using a slider-crank system, employing camera-based position tracking as reference measurements for the estimation, demonstrate the effectiveness of the proposed approach in estimating parameters such as connection stiffnesses and slider friction forces across diverse dynamic scenarios. Furthermore, this work highlights how the enforcement of inequality constraints mitigates estimation instability resulting from suboptimal filter tuning, providing increased robustness to the estimation process.
引用
收藏
页数:25
相关论文
共 81 条
  • [1] A Discrete-Time Extended Kalman Filter Approach Tailored for Multibody Models: State-Input Estimation
    Adduci, Rocco
    Vermaut, Martijn
    Naets, Frank
    Croes, Jan
    Desmet, Wim
    [J]. SENSORS, 2021, 21 (13)
  • [2] [Anonymous], 2006, OPTIMAL STATE ESTIMA, DOI DOI 10.1002/0470045345
  • [3] [Anonymous], 2010, IFAC Proc. Vol, DOI DOI 10.3182/20100826-3-TR-4015.00009
  • [4] Unscented Kalman filter for vehicle state estimation
    Antonov, S.
    Fehn, A.
    Kugi, A.
    [J]. VEHICLE SYSTEM DYNAMICS, 2011, 49 (09) : 1497 - 1520
  • [5] Antoulas A. C., 2005, ADV DES CONTROL, DOI 10.1137/1.9780898718713
  • [6] A dual Kalman filter approach for state estimation via output-only acceleration measurements
    Azam, Saeed Eftekhar
    Chatzi, Eleni
    Papadimitriou, Costas
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2015, 60-61 : 866 - 886
  • [7] Bauchau OA, 2011, SOLID MECH APPL, V176, P3, DOI 10.1007/978-94-007-0335-3
  • [8] Adaptive constrained unscented Kalman filtering for real-time nonlinear structural system identification
    Calabrese, Andrea
    Strano, Salvatore
    Terzo, Mario
    [J]. STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (02)
  • [9] Parameter, input and state estimation for linear structural dynamics using parametric model order reduction and augmented Kalman filtering
    Capalbo, Cristian Enrico
    De Gregoriis, Daniel
    Tamarozzi, Tommaso
    Devriendt, Hendrik
    Naets, Frank
    Carbone, Giuseppe
    Mundo, Domenico
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 185
  • [10] Chatterjee A, 2000, CURR SCI INDIA, V78, P808