Fabrication and evaluation of 3D printed PLGA/nHA/GO scaffold for bone tissue engineering

被引:1
作者
Tong, Ling [1 ]
Shi, Guopeng [1 ]
Liu, Qinghua [1 ]
Qian, Zhiyong [1 ]
Li, Jing [2 ]
Zhang, Kai [3 ]
Zhu, Yong [4 ]
Fang, Yuan [1 ]
Sha, Lirong [1 ]
Bai, Lin [1 ]
Li, Yumo [6 ]
Wang, Xing [5 ]
Ma, Yuan [5 ]
Jirigala, Enhe [1 ]
Wang, Haiyan [1 ]
Li, Xiaohe [1 ]
机构
[1] Inner Mongolia Med Univ, Sch Basic Med Sci, Dept Human Anat, Hohhot 010010, Inner Mongolia, Peoples R China
[2] Acad Mil Med Sci, State Key Lab Pathogen & Biosecur, Beijing 100071, Peoples R China
[3] Second Hosp Ulanqab City, Dept Orthopaed, Ulanqab 012000, Inner Mongolia, Peoples R China
[4] Inner Mongolia Med Univ, Peking Univ, Inner Mongolia Canc Ctr, Canc Hosp,Affiliated Canc Hosp, Inner Mongolia Campus, Hohhot 010110, Inner Mongolia, Peoples R China
[5] Inner Mongolia Med Univ, Digital Med Ctr, Sch Basic Med Sci, Hohhot 010110, Inner Mongolia, Peoples R China
[6] Inner Mongolia Med Univ, Sch Basic Med Sci, Hohhot 010110, Inner Mongolia, Peoples R China
关键词
3D printing; Scaffold; Bone tissue engineering; Polylactic-co-glycolic acid; Nano-hydroxyapatite; Graphene oxide; BEHAVIOR;
D O I
10.1038/s41598-025-96099-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The study aimed to fabricate and evaluate a bone tissue engineering scaffold made from a composite of polylactic-co-glycolic acid (PLGA), nano-hydroxyapatite (nHA), and graphene oxide (GO) using low-temperature 3D printing and freeze-drying techniques. The scaffolds were produced with varying compositions: PLGA alone and in combination with nHA and GO. The macro and microstructure, pore size, porosity, mechanical properties, and in vitro biocompatibility were assessed. Bone marrow mesenchymal stem cells (BMSCs) were co-cultured with the scaffolds to evaluate cell adhesion, proliferation, and cytotoxicity. The PLGA/nHA/GO composite scaffolds exhibited optimal pore size and microtopography, enhanced mechanical properties, excellent water absorption, and appropriate degradability. The co-culture with BMSCs demonstrated improved cell adhesion and proliferation, indicating good biocompatibility. The PLGA/nHA/GO composite scaffolds show potential as a bone tissue engineering material due to their favorable properties and biocompatibility, suggesting their suitability for bone defect repair applications.
引用
收藏
页数:13
相关论文
共 29 条
[1]   Graphene oxide enriched with oxygen-containing groups: on the way to an increase of antioxidant activity and biocompatibility [J].
Abdelhalim, Abdelsattar O. E. ;
Meshcheriakov, Anatolii A. ;
Maistrenko, Dmitrii N. ;
Molchanov, Oleg E. ;
Ageev, Sergei, V ;
Ivanova, Daria A. ;
Iamalova, Nailia R. ;
Luttsev, Mikhail D. ;
Vasina, Lubov V. ;
Sharoyko, Vladimir V. ;
Semenov, Konstantin N. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 210
[2]   Porous Scaffolds for Regeneration of Cartilage, Bone and Osteochondral Tissue [J].
Chen, Guoping ;
Kawazoe, Naoki .
OSTEOCHONDRAL TISSUE ENGINEERING: NANOTECHNOLOGY, SCAFFOLDING-RELATED DEVELOPMENTS AND TRANSLATION, 2018, 1058 :171-191
[3]   Piezoelectric 3-D Fibrous Poly(3-hydroxybutyrate)-Based Scaffolds Ultrasound-Mineralized with Calcium Carbonate for Bone Tissue Engineering: Inorganic Phase Formation, Osteoblast Cell Adhesion, and Proliferation [J].
Chernozem, R., V ;
Surmeneva, M. A. ;
Shkarina, S. N. ;
Loza, K. ;
Epple, M. ;
Ulbricht, M. ;
Cecilia, A. ;
Krause, B. ;
Baumbach, T. ;
Abalymov, A. A. ;
Parakhonskiy, B., V ;
Skirtach, A. G. ;
Surmenev, R. A. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (21) :19522-19533
[4]  
Crane G. M., 1995, About us
[5]   Three-Dimensional High-Porosity Chitosan/Honeycomb Porous Carbon/Hydroxyapatite Scaffold with Enhanced Osteoinductivity for Bone Regeneration [J].
Dai, Chengbai ;
Li, Yang ;
Pan, Wenzhen ;
Wang, Guoqiang ;
Huang, Ruqi ;
Bu, Yeyang ;
Liao, Xianjiu ;
Guo, Kaijin ;
Gao, Fenglei .
ACS BIOMATERIALS SCIENCE & ENGINEERING, 2020, 6 (01) :575-586
[6]   Graphene Oxide. Origin of Acidity, Its Instability in Water, and a New Dynamic Structural Model [J].
Dimiev, Ayrat M. ;
Alemany, Lawrence B. ;
Tour, James M. .
ACS NANO, 2013, 7 (01) :576-588
[7]   Uncovering the Diversification of Tissue Engineering on the Emergent Areas of Stem Cells, Nanotechnology and Biomaterials [J].
Dubey, Sunil K. ;
Alexander, Amit ;
Sivaram, Munnangi ;
Agrawal, Mukta ;
Singhvi, Gautam ;
Sharma, Swapnil ;
Dayaramani, Richa .
CURRENT STEM CELL RESEARCH & THERAPY, 2020, 15 (03) :187-201
[8]   Novel bio-inspired 3D porous scaffold intended for bone-tissue engineering: Design and in silico characterisation of histomorphometric, mechanical and mass-transport properties [J].
Gomez Gonzalez, Sergio ;
Vlad, Maria Daniela ;
Lopez Lopez, Jose ;
Fernandez Aguado, Enrique .
MATERIALS & DESIGN, 2023, 225
[9]   Hydroxyapatite scaffold pore architecture effects in large bone defects in vivo [J].
Guda, Teja ;
Walker, John A. ;
Singleton, Brian ;
Hernandez, Jesus ;
Oh, Daniel S. ;
Appleford, Mark R. ;
Ong, Joo L. ;
Wenke, Joseph C. .
JOURNAL OF BIOMATERIALS APPLICATIONS, 2014, 28 (07) :1016-1027
[10]   Surface Roughness and Biocompatibility of Polycaprolactone Bone Scaffolds: An Energy-Density-Guided Parameter Optimization for Selective Laser Sintering [J].
Han, Jian ;
Li, Zehua ;
Sun, Yuxuan ;
Cheng, Fajun ;
Zhu, Lei ;
Zhang, Yaoyao ;
Zhang, Zirui ;
Wu, Jinzhe ;
Wang, Junfeng .
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10