Generalized Bell polynomials

被引:0
作者
Duran, Antonio J. [1 ,2 ]
机构
[1] Univ Seville, Dept Anal Matemat, Seville 41080, Spain
[2] Univ Seville, IMUS, Seville 41080, Spain
关键词
Laguerre multiple polynomials; Bell polynomials; Zeros; Interlacing; ZEROS;
D O I
10.1016/j.jat.2024.106121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, generalized Bell polynomials ( b phi n ) n associated to a sequence of real numbers phi = ( phi i ) infinity i =1 are introduced. Bell polynomials correspond to phi i = 0, i >= 1. We prove that when phi i >= 0, i >= 1: (a) the zeros of the generalized Bell polynomial b phi n are simple, real and non positive; (b) the zeros of b phi n +1 interlace the zeros of b phi n ; (c) the zeros are decreasing functions of the parameters phi i . We find a hypergeometric representation for the generalized Bell polynomials. As a consequence, it is proved that the class of all generalized Bell polynomials is actually the same class as that of all Laguerre multiple polynomials of the first kind. (c) 2024 Published by Elsevier Inc.
引用
收藏
页数:18
相关论文
共 21 条
[1]   Multiple orthogonal polynomials for classical weights [J].
Aptekarev, AI ;
Branquinho, A ;
Van Assche, W .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (10) :3887-3914
[2]   Exponential polynomials [J].
Bell, ET .
ANNALS OF MATHEMATICS, 1934, 35 :258-277
[3]  
Berndt B.C., 1991, Ramanujan's Notebooks
[4]  
Bona Miklos., 2004, DISCRETE MATH ITS AP
[5]   Exponential Polynomials, Stirling Numbers, and Evaluation of Some Gamma Integrals [J].
Boyadzhiev, Khristo N. .
ABSTRACT AND APPLIED ANALYSIS, 2009,
[6]   Interlacing of zeros of shifted sequences of one-parameter orthogonal polynomials [J].
Driver, Kathy ;
Jordaan, Kerstin .
NUMERISCHE MATHEMATIK, 2007, 107 (04) :615-624
[7]   Sharp parameter intervals for interlacing of zeros of equal degree Laguerre polynomials [J].
Driver, Kathy ;
Muldoon, Martin E. .
JOURNAL OF APPROXIMATION THEORY, 2019, 248
[8]  
Durán AJ, 2024, Arxiv, DOI arXiv:2404.03249
[9]  
Graham R.L., 1994, CONCRETE MATH FDN CO, V2nd
[10]   STIRLING BEHAVIOR IS ASYMPTOTICALLY NORMAL [J].
HARPER, LH .
ANNALS OF MATHEMATICAL STATISTICS, 1967, 38 (02) :410-&