Reaction-diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions

被引:0
|
作者
de Jong, Thomas Geert [1 ]
Prokert, Georg [2 ]
Sterk, Alef Edou [3 ]
机构
[1] Kanazawa Univ, Inst Sci & Engn, Fac Math & Phys, Kanazawa, Japan
[2] Eindhoven Univ Technol, Fac Math & Comp Sci, Ctr Anal Sci Comp & Applicat, Eindhoven, Netherlands
[3] Univ Groningen, Bernoulli Inst Math Comp Sci & Artificial Intellig, Groningen, Netherlands
关键词
parabolic PDE; reaction-diffusion; ff usion; diabetes; pancreas; asymptotic stability; gradient flow; monotone operator theory; OXYGEN DIFFUSION; SPHERICAL CELL; NONIMMUNOSUPPRESSED PATIENTS; ISLETS; MICROCAPSULES; HYDROGEL; MODEL;
D O I
10.3934/nhm.2025001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We formulate and investigate a nonlinear parabolic reaction-diffusion equation describing the oxygen concentration in encapsulated pancreatic cells with a general core-shell geometry. This geometry introduces a discontinuous diffusion coefficient as the material properties of the core and shell differ. We apply monotone operator theory to show the well-posedness of the problem in the strong form. Furthermore, the stationary solutions are unique and asymptotically stable. These results rely on the gradient structure of the underlying PDE. Our results provide necessary theoretical steps for validation of the model.
引用
收藏
页码:1 / 14
页数:14
相关论文
empty
未找到相关数据