Online Continual Safe Reinforcement Learning-based Optimal Control of Mobile Robot Formations

被引:0
作者
Ganie, Irfan [1 ]
Jagannathan, S. [1 ]
机构
[1] Missouri Univ Sci & Technol, Dept Elec & Comp Engn, Rolla, MO 65409 USA
来源
2024 IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS, CCTA 2024 | 2024年
关键词
Optimal Control; Formation Control; Neural Networks; Mobile Robot; SYSTEMS;
D O I
10.1109/CCTA60707.2024.10666606
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, a leader-follower tracking and formation control strategy for mobile robots (MRs) with uncertain dynamics is proposed. This strategy utilizes a continual lifelong safe reinforcement learning (CLSRL) framework based on multilayer neural networks (MNNs). The proposed design employs actor-critic MNNs, incorporating a barrier function. This function is derived from the Bellman optimality principle. It addresses the state constraints throughout the control design process. A novel online continual lifelong learning (CLL) method is introduced for MR formation. This method leverages the Bellman residual error for weight significance in MNNs. It addresses catastrophic forgetting and interlayer dependence through layer-specific regularizers. Novel weight update laws are proposed. The simulation results show a 35% improvement in performance.
引用
收藏
页码:519 / 524
页数:6
相关论文
共 14 条
[1]   Neural Network Control of Mobile Robot Formations Using RISE Feedback [J].
Dierks, Travis ;
Jagannathan, S. .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (02) :332-347
[2]   Optimal Adaptive Tracking Control of Partially Uncertain Nonlinear Discrete-Time Systems Using Lifelong Hybrid Learning [J].
Farzanegan, Behzad ;
Moghadam, Rohollah ;
Jagannathan, Sarangapani ;
Natarajan, Pappa .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) :17254-17265
[3]  
Ganie I., IEEE Transactions on Cybernetics, P1
[4]   Adaptive Leader-Follower Formation Control of Underactuated Surface Vessels Under Asymmetric Range and Bearing Constraints [J].
Ghommam, Jawhar ;
Saad, Maarouf .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2018, 67 (02) :852-865
[5]   New Concepts in Adaptive Control Using Multiple Models [J].
Han, Zhuo ;
Narendra, Kumpati S. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2012, 57 (01) :78-89
[6]   Overcoming catastrophic forgetting in neural networks [J].
Kirkpatricka, James ;
Pascanu, Razvan ;
Rabinowitz, Neil ;
Veness, Joel ;
Desjardins, Guillaume ;
Rusu, Andrei A. ;
Milan, Kieran ;
Quan, John ;
Ramalho, Tiago ;
Grabska-Barwinska, Agnieszka ;
Hassabis, Demis ;
Clopath, Claudia ;
Kumaran, Dharshan ;
Hadsell, Raia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) :3521-3526
[7]  
Lewis F.L., 1999, Neural Network Control of Robot Manipulators and Nonlinear Systems
[8]   Safe reinforcement learning: A control barrier function optimization approach [J].
Marvi, Zahra ;
Kiumarsi, Bahare .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2021, 31 (06) :1923-1940
[9]  
McLain TW, 1998, IEEE INT CONF ROBOT, P762, DOI 10.1109/ROBOT.1998.677069
[10]   Optimal tracking control of nonlinear partially-unknown constrained-input systems using integral reinforcement learning [J].
Modares, Hamidreza ;
Lewis, Frank L. .
AUTOMATICA, 2014, 50 (07) :1780-1792