U-COPE: Taking a Further Step to Universal 9D Category-Level Object Pose Estimation

被引:0
|
作者
Zhang, Li [1 ,2 ,5 ]
Meng, Weiqing [3 ]
Zhong, Yan [4 ]
Kong, Bin [1 ]
Xu, Mingliang [2 ]
Du, Jianming [1 ]
Wang, Xue [1 ]
Wang, Rujing [1 ]
Liu, Liu [6 ]
机构
[1] Chinese Acad Sci, Hefei Inst Phys Sci, Beijing, Peoples R China
[2] Univ Sci & Technol China, Hefei, Peoples R China
[3] Anhui Univ, Hefei, Peoples R China
[4] Peking Univ, Sch Math Sci, Natl Engn Res Ctr Visual Technol, Beijing, Peoples R China
[5] Astribot, Shenzhen, Peoples R China
[6] Hefei Univ Technol, Hefei, Peoples R China
来源
COMPUTER VISION - ECCV 2024, PT X | 2025年 / 15068卷
基金
中国国家自然科学基金;
关键词
Rigid objects; Articulated objects; Pose estimation;
D O I
10.1007/978-3-031-72684-2_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Rigid and articulated objects are common in our daily lives. Pose estimation tasks for both types of objects have been extensively studied within their respective domains. However, a universal framework capable of estimating the pose of both rigid and articulated objects has yet to be reported. In this paper, we introduce a Universal 9D Category-level Object Pose Estimation (U-COPE) framework, designed to address this gap. Our approach offers a novel perspective on rigid and articulated objects, redefining their pose estimation problems to unify them into a common task. Leveraging either 3D point cloud or RGB-D image inputs, we extract Point Pair Features (PPF) independently from each object part for end-to-end learning. Moreover, instead of direct prediction as seen in prior art, we employ a universal voting strategy to derive decisive parameters crucial for object pose estimation. Our network is trained end-to-end to optimize three key objectives: Joint Information, Part Segmentation, and 9D pose estimation through parameter voting. Extensive experiments validate the robustness of our method in estimating poses for both rigid and articulated objects, which demonstrates the generalizability to unseen object instances, too. Notably, our approach achieves state-of-the-art performance on synthetic datasets and real-world datasets.
引用
收藏
页码:254 / 270
页数:17
相关论文
共 50 条
  • [1] Category-Level Articulated Object 9D Pose Estimation via Reinforcement Learning
    Liu, Liu
    Du, Jianming
    Wu, Hao
    Yang, Xun
    Liu, Zhenguang
    Hong, Richang
    Wang, Meng
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 728 - 736
  • [2] CPPF: Towards Robust Category-Level 9D Pose Estimation in the Wild
    You, Yang
    Shi, Ruoxi
    Wang, Weiming
    Lu, Cewu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 6856 - 6865
  • [3] Category-Level Articulated Object Pose Estimation
    Li, Xiaolong
    Wang, He
    Yi, Li
    Guibas, Leonidas
    Abbott, A. Lynn
    Song, Shuran
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3703 - 3712
  • [4] UDA-COPE: Unsupervised Domain Adaptation for Category-level Object Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Shin, Inkyu
    Choe, Jaesung
    Shin, Ukcheol
    Kweon, In So
    Yoon, Kuk-Jin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14871 - 14880
  • [5] Category-Level Object Pose Estimation with Statistic Attention
    Jiang, Changhong
    Mu, Xiaoqiao
    Zhang, Bingbing
    Liang, Chao
    Xie, Mujun
    SENSORS, 2024, 24 (16)
  • [6] TTA-COPE: Test-Time Adaptation for Category-Level Object Pose Estimation
    Lee, Taeyeop
    Tremblay, Jonathan
    Blukis, Valts
    Wen, Bowen
    Lee, Byeong-Uk
    Shin, Inkyu
    Birchfield, Stan
    Kweon, In So
    Yoon, Kuk-Jin
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21285 - 21295
  • [7] An efficient network for category-level 6D object pose estimation
    Sun, Shantong
    Liu, Rongke
    Sun, Shuqiao
    Yang, Xinxin
    Lu, Guangshan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (07) : 1643 - 1651
  • [8] RANSAC Optimization for Category-level 6D Object Pose Estimation
    Chen, Ying
    Kang, Guixia
    Wang, Yiping
    2020 5TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2020), 2020, : 50 - 56
  • [9] CatFormer: Category-Level 6D Object Pose Estimation with Transformer
    Yu, Sheng
    Zhai, Di-Hua
    Xia, Yuanqing
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 6808 - 6816
  • [10] An efficient network for category-level 6D object pose estimation
    Shantong Sun
    Rongke Liu
    Shuqiao Sun
    Xinxin Yang
    Guangshan Lu
    Signal, Image and Video Processing, 2021, 15 : 1643 - 1651