Evolution of microstructure, elemental segregation and magnetic order in Ti20Co20Cu20Fe20Ni20 high entropy alloy

被引:0
作者
Mohanty, Sutanuka [1 ]
Palit, Mithun [2 ]
Pradeep, K. G. [3 ]
Biswas, Krishanu [1 ]
机构
[1] Indian Inst Technol, Kanpur 208016, India
[2] Def Met Res Lab, Hyderabad 500058, India
[3] Indian Inst Technol, Chennai 600036, India
关键词
High entropy alloy; Nano clusters; Magnetic properties; Antiferromagnetic order; PHASE-FORMATION; SINGLE-PHASE; DECOMPOSITION; BEHAVIOR; PRECIPITATION; STABILITY; SYSTEM;
D O I
10.1016/j.jallcom.2024.178089
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Ti20Co20Cu20Fe20Ni20 HEA was prepared by mechanical alloying and consolidated by spark plasma sintering. The microstructural studies including Atom Probe Tomography and evaluation of magnetic properties suggest partitioning of elements into (Fe, Co, Ni)-rich ferromagnetic delta-phase and non-ferromagnetic mu -phase. Owing to large change of magnetic entropy across the Curie temperature of the ferromagnetic phase, the phase separation becomes more prominent and is evident in the form of clustering of ferromagnetic elements. The presence of alternate lamellae of ferromagnetic delta phase and non-ferromagnetic mu -phase in some grains, led to anti- ferromagnetic interactions amongst ferromagnetic delta lamellae resulting from separation by fine scale non- ferromagnetic spacer (mu lamella). Such antiferromagnetic exchange is also in accordance with similar exchange behaviour in Fe/Cu/Fe and Co/Cu/Co multilayers reported earlier. The co-existence of ferromagnetic and antiferromagnetic order leads to presence of exchange bias as evident in the asymmetric shift in the hysteresis loop of the samples along positive field axis.
引用
收藏
页数:14
相关论文
共 42 条
[1]   The role of atomic scale segregation in designing highly ductile magnesium alloys [J].
Basu, I. ;
Pradeep, K. G. ;
Miessen, C. ;
Barrales-Mora, L. A. ;
Al-Samman, T. .
ACTA MATERIALIA, 2016, 116 :77-94
[2]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218
[3]   Application of the cluster/site approximation to the calculation of multicomponent alloy phase diagrams [J].
Cao, W ;
Chang, YA ;
Zhu, J ;
Chen, S ;
Oates, WA .
ACTA MATERIALIA, 2005, 53 (02) :331-335
[4]   Microstructure and properties of age-hardenable AlxCrFe1.5MnNi0.5 alloys [J].
Chen, Shin-Tsung ;
Tang, Wei-Yeh ;
Kuo, Yen-Fu ;
Chen, Sheng-Yao ;
Tsau, Chun-Huei ;
Shun, Tao-Tsung ;
Yeh, Jien-Wei .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (21-22) :5818-5825
[5]   Intrinsic surface hardening and precipitation kinetics of Al0.3CrFe1.5MnNi0.5 multi-component alloy [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Tsai, Che-Wei ;
Yang, Nai-Hao ;
Chang, Shou-Yi ;
Yeh, Jien-Wei ;
Chen, Swe-Kai ;
Lin, Su-Jien .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 551 :12-18
[6]   Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys [J].
Chuang, Ming-Hao ;
Tsai, Ming-Hung ;
Wang, Woei-Ren ;
Lin, Su-Jien ;
Yeh, Jien-Wei .
ACTA MATERIALIA, 2011, 59 (16) :6308-6317
[7]  
Cullity B.D., 1978, Elements of X -ray diffraction, Vsecond
[8]   ANTIFERROMAGNETIC COUPLING IN FE/CU/FE AND CO/CU/CO MULTILAYERS ON CU(111) [J].
EGELHOFF, WF ;
KIEF, MT .
PHYSICAL REVIEW B, 1992, 45 (14) :7795-7804
[9]   Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys [J].
Hemphill, M. A. ;
Yuan, T. ;
Wang, G. Y. ;
Yeh, J. W. ;
Tsai, C. W. ;
Chuang, A. ;
Liaw, P. K. .
ACTA MATERIALIA, 2012, 60 (16) :5723-5734
[10]   Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys [J].
Kao, Yih-Farn ;
Chen, Swe-Kai ;
Chen, Ting-Jie ;
Chu, Po-Chou ;
Yeh, Jien-Wei ;
Lin, Su-Jien .
JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (05) :1607-1614