On boundedness of Hausdorff-type operators on Sobolev spaces

被引:0
作者
Mirotin, A. R. [1 ,2 ]
机构
[1] Francisk Skorina Gomel State Univ, Dept Math & Programming Technol, Gomel 246019, BELARUS
[2] Southern Fed Univ, Reg Math Ctr, Rostov Na Donu, Russia
关键词
Hausdorff operator; Sobolev space; isometry; sharp conditions; HARDY-SPACES; HOMOGENEOUS SPACES; H-1;
D O I
10.1080/10652469.2024.2411682
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new notion of a Hausdorff-type operator on function spaces over domains in Euclidean spaces is introduced, and a sufficient condition for the boundedness of this operator on Sobolev spaces is proved. It is shown that this condition cannot be weakened in general.
引用
收藏
页码:221 / 229
页数:9
相关论文
共 23 条
[1]  
Adams R., 2003, SOBOLEV SPACES
[2]   Multivariate Hausdorff operators on the spaces Lp(Rn) [J].
Brown, G ;
Móricz, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 271 (02) :443-454
[3]   Hausdorff operators on Euclidean spaces [J].
Chen Jie-cheng ;
Fan Da-shan ;
Wang Si-lei .
APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) :548-564
[4]   Estimates for singular numbers of Hausdorff-Zhu operators and applications [J].
Grudsky, Sergei ;
Karapetyants, Alexey ;
Mirotin, Adolf .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (08) :9676-9693
[5]  
Hardy GH., 1949, Divergent Series
[6]  
Heinonen J., 2015, NEW MATH MONOGR, V27, DOI DOI 10.1017/CBO9781316135914
[7]  
Heinonen J., 2001, LECT ANAL METRIC SPA
[8]  
Hytönen T, 2016, ERGEB MATH, V63, P1, DOI 10.1007/978-3-319-48520-1_1
[9]   A class of Hausdorff-Zhu operators [J].
Karapetyants, Alexey ;
Mirotin, Adolf .
ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (03)
[10]  
Kobayshi S., 1996, FDN DIFFERENTIAL GEO, V1