Prognostic Value and Pathological Correlation of Peritumoral Radiomics in Surgically Resected Non-Small Cell Lung Cancer

被引:6
作者
Tominaga, Masaki [1 ]
Yamazaki, Motohiko [1 ]
Umezu, Hajime [2 ]
Sugino, Hideaki [2 ]
Fuzawa, Yuma [1 ]
Yagi, Takuya [1 ]
Ishikawa, Hiroyuki [1 ]
机构
[1] Niigata Univ, Grad Sch Med & Dent Sci, Dept Radiol & Radiat Oncol, Niigata, Japan
[2] Niigata Univ Med & Dent Hosp, Div Pathol, Niigata, Japan
基金
日本学术振兴会;
关键词
Non-small cell lung cancer; Overall survival; Pathological correlation; Peritumor; Radiomics; AIR SPACES; TUMOR SPREAD; STAGE-I; SURVIVAL; PREDICTION; RECURRENCE; FEATURES; MODELS;
D O I
10.1016/j.acra.2024.01.033
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Rationale and objectives: To determine the additional value of peritumoral radiomics in predicting overall survival (OS) in surgically resected non-small cell lung cancer (NSCLC) and its correlation with pathological findings. Methods: A total of 526 patients with surgically resected NSCLC were included (191 training, 160 internal validation, and 175 external validation cohorts). CT images were used to segment the gross tumor volume (GTV) and peritumoral volume (PTV) within distances of 3, 6, 9 mm from the tumor boundary (PTV3, PTV6, and PTV9), and radiomic features were extracted. Four prognostic models for OS (GTV, GTV + PTV3, GTV + PTV6, and GTV + PTV9) were constructed using the training cohort. The prognostic ability and feature importance were evaluated using the validation cohorts. Pathological findings were compared between the two patient groups (n = 30 for each) having the top 30 and bottom 30 values of the most important peritumoral feature. Results: The GTV+ PTV3 models exhibited the highest predictive ability, which was higher than that of the GTV model in the internal validation cohort (C-index: 0.666 vs. 0.616, P = 0.027) and external validation cohort (C-index: 0.705 vs. 0.656, P = 0.048). The most important feature was GLDM_Dependence_Entropy, extracted from PTV3. High peritumoral GLDM_Dependence_Entropy was associated with a high proportion of invasive histological types, tumor spread through air spaces, and tumor-infiltrating lymphocytes (all P < 0.05). Conclusion: The GTV and PTV3 combination demonstrated a higher prognostic ability, compared to GTV alone. Peritumoral radiomic features may be associated with various pathological prognostic factors.
引用
收藏
页码:3801 / 3810
页数:10
相关论文
共 30 条
[1]   A radiogenomic dataset of non-small cell lung cancer [J].
Bakr, Shaimaa ;
Gevaert, Olivier ;
Echegaray, Sebastian ;
Ayers, Kelsey ;
Zhou, Mu ;
Shafiq, Majid ;
Zheng, Hong ;
Benson, Jalen Anthony ;
Zhang, Weiruo ;
Leung, Ann N. C. ;
Kadoch, Michael ;
Hoang, Chuong D. ;
Shrager, Joseph ;
Quon, Andrew ;
Rubin, Daniel L. ;
Plevritis, Sylvia K. ;
Napel, Sandy .
SCIENTIFIC DATA, 2018, 5
[2]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[3]   Prognostic Effect of Tumor Lymphocytic Infiltration in Resectable Non-Small-Cell Lung Cancer [J].
Brambilla, Elisabeth ;
Le Teuff, Gwenael ;
Marguet, Sophie ;
Lantuejoul, Sylvie ;
Dunant, Ariane ;
Graziano, Stephen ;
Pirker, Robert ;
Douillard, Jean-Yves ;
Le Chevalier, Thierry ;
Filipits, Martin ;
Rosell, Rafael ;
Kratzke, Robert ;
Popper, Helmut ;
Soria, Jean-Charles ;
Shepherd, Frances A. ;
Seymour, Lesley ;
Tsao, Ming Sound .
JOURNAL OF CLINICAL ONCOLOGY, 2016, 34 (11) :1223-+
[4]   Intratumoral and peritumoral radiomics nomograms for the preoperative prediction of lymphovascular invasion and overall survival in non-small cell lung cancer [J].
Chen, Qiaoling ;
Shao, JingJing ;
Xue, Ting ;
Peng, Hui ;
Li, Manman ;
Duan, Shaofeng ;
Feng, Feng .
EUROPEAN RADIOLOGY, 2023, 33 (02) :947-958
[5]   CT Radiomics Signature of Tumor and Peritumoral Lung Parenchyma to Predict Nonsmall Cell Lung Cancer Postsurgical Recurrence Risk [J].
D'Antonoli, Tugba Akinci ;
Farchione, Alessandra ;
Lenkowicz, Jacopo ;
Chiappetta, Marco ;
Cicchetti, Giuseppe ;
Martino, Antonella ;
Ottavianelli, Alessandra ;
Manfredi, Riccardo ;
Margaritora, Stefano ;
Bonomo, Lorenzo ;
Valentini, Vincenzo ;
Larici, Anna Rita .
ACADEMIC RADIOLOGY, 2020, 27 (04) :497-507
[6]   Tumor Spread through Air Spaces Affects the Recurrence and Overall Survival in Patients with Lung Adenocarcinoma &gt;2 to 3 cm [J].
Dai, Chenyang ;
Xie, Huikang ;
Su, Hang ;
She, Yunlang ;
Zhu, Erjia ;
Fan, Ziwen ;
Zhou, Fangyu ;
Ren, Yijiu ;
Xie, Dong ;
Zheng, Hui ;
Kadeer, Xiermaimaiti ;
Chen, Donglai ;
Zhang, Liping ;
Jiang, Gening ;
Wu, Chunyan ;
Chen, Chang .
JOURNAL OF THORACIC ONCOLOGY, 2017, 12 (07) :1052-1060
[7]   A comparative study of survival models for breast cancer prognostication based on microarray data: does a single gene beat them all? [J].
Haibe-Kains, B. ;
Desmedt, C. ;
Sotiriou, C. ;
Bontempi, G. .
BIOINFORMATICS, 2008, 24 (19) :2200-2208
[8]  
Harrell FE, 1996, STAT MED, V15, P361, DOI 10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO
[9]  
2-4
[10]   Radiomics Signature: A Potential Biomarker for the Prediction of Disease-Free Survival in Early-Stage (I or II) Non-Small Cell Lung Cancer [J].
Huang, Yanqi ;
Liu, Zaiyi ;
He, Lan ;
Chen, Xin ;
Pan, Dan ;
Ma, Zelan ;
Liang, Cuishan ;
Tian, Jie ;
Liang, Changhong .
RADIOLOGY, 2016, 281 (03) :947-957