The fullness conjectures for products of elliptic curves

被引:0
作者
Kahn, Bruno [1 ,2 ]
Demarche, Cyril [1 ,2 ]
机构
[1] Sorbonne Univ, F-75005 Paris, France
[2] Univ Paris Cite, CNRS, IMJ PRG, F-75005 Paris, France
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2025年 / 2025卷 / 819期
关键词
TATE-CONJECTURE; HOMOGENEOUS SPACES; ABELIAN-VARIETIES;
D O I
10.1515/crelle-2024-0088
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove all conjectures of Chapter 7 of Yves Andr & eacute;'s book (2004) in the case of products of elliptic curves. The proofs given here are simpler and more uniform than the previous proofs in known cases.
引用
收藏
页码:301 / 318
页数:18
相关论文
共 31 条
[1]  
Andr Y., 2004, Panoramas et Syntheses
[2]  
Barbieri-Viale L, 2025, Arxiv, DOI arXiv:2401.14127
[3]   Third kind elliptic integrals and 1-motives [J].
Bertolin, Cristiana .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2020, 224 (10)
[4]   ABELIANIZATION OF THE 2ND NONABELIAN GALOIS COHOMOLOGY [J].
BOROVOI, MV .
DUKE MATHEMATICAL JOURNAL, 1993, 72 (01) :217-239
[5]  
Bourbaki N., 2012, lments de mathmatique. Algbre. Chapitre 8. Modules et anneaux semi-simples
[6]  
Chevalley C., 1954, Theorie de groupes de Lie, VIII
[7]   PRINCIPAL HOMOGENEOUS SPACES UNDER FLASQUE TORI - APPLICATIONS [J].
COLLIOTTHELENE, JL ;
SANSUC, JJ .
JOURNAL OF ALGEBRA, 1987, 106 (01) :148-205
[8]  
Deligne P., 1982, Hodge cycles, motives, and Shimura varieties
[9]   Semi-simplicity of tensorial products in characteristics p [J].
Deligne, Pierre .
INVENTIONES MATHEMATICAE, 2014, 197 (03) :587-611
[10]   The Hasse principle for homogeneous spaces: reduction to the case of finite stabilisers [J].
Demarche, Cyril ;
Arteche, Giancarlo Lucchini .
COMPOSITIO MATHEMATICA, 2019, 155 (08) :1568-1593