Automatic bi-atrial segmentation and biomarker extraction from late gadolinium-enhanced MRI using deep learning

被引:0
作者
Feng, Fan [1 ]
Kennelly, James [1 ]
Xiong, Zhaohan [1 ]
Nalar, Aaqel [1 ]
Sharma, Roshan [1 ]
Petersen, Steffen E. [2 ,3 ]
V. Fedorov, Vadim [4 ]
Stiles, Martin K.
Zhao, Jichao [1 ]
机构
[1] Univ Auckland, Auckland Bioengn Inst, Auckland 1142, New Zealand
[2] Queen Mary Univ London, William Harvey Res Inst, London, England
[3] Barts Hlth Natl Hlth Serv Trust, St Bartholomews Hosp, Barts Heart Ctr, London, England
[4] Ohio State Univ, Bob & Corrine Frick Ctr Heart Failure & Arrhythmia, Physiol & Cell Biol Dept, Wexner Med Ctr,Med Ctr, Columbus, OH USA
关键词
Atrial fibrillation; Deep learning; Cardiac magnetic resonance imaging; late gadolinium-enhanced MRIs; LGE-MRI; Medical image segmentation; Fibrosis; CATHETER ABLATION; FIBRILLATION ABLATION; FIBROSIS; SUBSTRATE; THICKNESS; AF;
D O I
10.1016/j.eswa.2025.127335
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Atrial fibrillation (AF) is associated with progressive structural remodeling of the atria, including chamber dilation, fibrosis, and variations in atrial wall thickness (AWT). Late gadolinium-enhanced (LGE) magnetic resonance imaging (MRI) has been used to quantify left atrium (LA) fibrosis for guiding adjunctive ablation beyond pulmonary vein isolation, though results have varied. A major limitation is the lack of a robust segmentation method for accurately assessing both atrial anatomy and fibrosis, coupled with the exclusion of the right atrium (RA) in the analysis. This study introduces biAtriaNet, a deep learning pipeline developed to automate segmentation of both LA and RA and to evaluate atrial fibrosis, AWT, and chamber diameter and volume from LGE-MRIs to support targeted AF ablation. biAtriaNet was trained and validated on 2D cine-MRIs from 4860 UK Biobank participants and 3D LGE-MRIs from 60 AF patients from the University of Utah, with independent testing on 11 3D LGE-MRIs at Waikato Hospital, New Zealand. The biAtriaNet consists of two CNNs based on a modified U-Net architecture with residual connections and batch normalization, optimized based on prior global benchmark study. This approach achieved accurate, consistent segmentation and biomarker extraction in UK Biobank and Utah datasets, validated against expert annotations. Additionally, biAtriaNet showed high transferability to independent datasets, achieving Dice scores of 91.1 % for LA and 88.6 % for RA. Chamber volume estimates closely matched ground truth values (LA: 89.8 +/- 33.0 ml versus 91.1 +/- 41.2 ml; RA: 70.8 +/- 16.9 ml versus 72.3 +/- 20.5 ml) with > 90 % accuracy in chamber measurements. AWT accuracies were 95.9 % for LA and 94.6 % for RA, while fibrosis estimates showed Kolmogorov-Smirnov correlations of 86.3 % (LA) and 90.6 % (RA) (p < 0.05). By enabling robust bi-atrial segmentation and biomarker extraction from LGE-MRIs, biAtriaNet has the potential to enhance patient-specific AF treatment strategies.
引用
收藏
页数:13
相关论文
共 54 条
[1]   Extensive right atrial free wall low-voltage zone as the substrate for atrial fibrillation: successful ablation by scar homogenization [J].
Al-Kaisey, Ahmed M. ;
Parameswaran, Ramanathan ;
Joseph, Stephen A. ;
Kistler, Peter M. ;
Morton, Joseph B. ;
Kalman, Jonathan M. .
EUROPACE, 2021, 23 (01) :59-64
[2]   A population-based phenome-wide association study of cardiac and aortic structure and function [J].
Bai, Wenjia ;
Suzuki, Hideaki ;
Huang, Jian ;
Francis, Catherine ;
Wang, Shuo ;
Tarroni, Giacomo ;
Guitton, Florian ;
Aung, Nay ;
Fung, Kenneth ;
Petersen, Steffen E. ;
Piechnik, Stefan K. ;
Neubauer, Stefan ;
Evangelou, Evangelos ;
Dehghan, Abbas ;
O'Regan, Declan P. ;
Wilkins, Martin R. ;
Guo, Yike ;
Matthews, Paul M. ;
Rueckert, Daniel .
NATURE MEDICINE, 2020, 26 (10) :1654-+
[3]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[4]   Magnetic Resonance Imaging-Guided Fibrosis Ablation for the Treatment of Atrial Fibrillation The ALICIA Trial [J].
Bisbal, Felipe ;
Benito, Eva ;
Teis, Albert ;
Alarcon, Francisco ;
Sarrias, Axel ;
Caixal, Gala ;
Villuendas, Roger ;
Garre, Paz ;
Soto, Nina ;
Cozzari, Jennifer ;
Guasch, Eduard ;
Junca, Gladys ;
Prat-Gonzalez, Susanna ;
Perea, Rosario J. ;
Bazan, Victor ;
Maria Tolosana, Jose ;
Arbelo, Elena ;
Bayes-Genis, Antoni ;
Mont, Lluis .
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2020, 13 (11) :E008707
[5]   Three-dimensional atrial wall thickness maps to inform catheter ablation procedures for atrial fibrillation [J].
Bishop, Martin ;
Rajani, Ronak ;
Plank, Gernot ;
Gaddum, Nicholas ;
Carr-White, Gerry ;
Wright, Matt ;
O'Neill, Mark ;
Niederer, Steven .
EUROPACE, 2016, 18 (03) :376-383
[6]   Elevated fibrosis burden as assessed by MRI predicts cryoballoon ablation failure [J].
Boyle, Patrick M. M. ;
Sarairah, Sakher ;
Kwan, Kirsten T. T. ;
Scott, Griffin D. D. ;
Mohamedali, Farzana ;
Anderson, Carter A. A. ;
Bifulco, Savannah F. F. ;
Ordovas, Karen G. G. ;
Prutkin, Jordan ;
Robinson, Melissa ;
Sridhar, Arun R. R. ;
Akoum, Nazem .
JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, 2023, 34 (02) :302-312
[7]   Outcomes of long-standing persistent atrial fibrillation ablation: A systematic review [J].
Brooks, Anthony G. ;
Stiles, Martin K. ;
Laborderie, Julien ;
Lau, Dennis H. ;
Kuklik, Pawel ;
Shipp, Nicholas J. ;
Hsu, Li-Fern ;
Sanders, Prashanthan .
HEART RHYTHM, 2010, 7 (06) :835-846
[8]   Accuracy of left atrial fibrosis detection with cardiac magnetic resonance: correlation of late gadolinium enhancement with endocardial voltage and conduction velocity [J].
Caixal, Gala ;
Alarcon, Francisco ;
Althoff, Till F. ;
Nunez-Garcia, Marta ;
Benito, Eva Maria ;
Borras, Roger ;
Perea, Rosario Jesus ;
Prat-Gonzalez, Susana ;
Garre, Paz ;
Soto-Iglesias, David ;
Gunturitz, Clara ;
Cozzari, Jennifer ;
Linhart, Markus ;
Maria Tolosana, Jose ;
Arbelo, Elena ;
Roca-Luque, Ivo ;
Sitges, Marta ;
Guasch, Eduard ;
Mont, Lluis .
EUROPACE, 2021, 23 (03) :380-388
[9]   Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge [J].
Campello, Victor M. ;
Gkontra, Polyxeni ;
Izquierdo, Cristian ;
Martin-Isla, Carlos ;
Sojoudi, Alireza ;
Full, Peter M. ;
Maier-Hein, Klaus ;
Zhang, Yao ;
He, Zhiqiang ;
Ma, Jun ;
Parreno, Mario ;
Albiol, Alberto ;
Kong, Fanwei ;
Shadden, Shawn C. ;
Acero, Jorge Corral ;
Sundaresan, Vaanathi ;
Saber, Mina ;
Elattar, Mustafa ;
Li, Hongwei ;
Menze, Bjoern ;
Khader, Firas ;
Haarburger, Christoph ;
Scannell, Cian M. ;
Veta, Mitko ;
Carscadden, Adam ;
Punithakumar, Kumaradevan ;
Liu, Xiao ;
Tsaftaris, Sotirios A. ;
Huang, Xiaoqiong ;
Yang, Xin ;
Li, Lei ;
Zhuang, Xiahai ;
Vilades, David ;
Descalzo, Martin L. ;
Guala, Andrea ;
La Mura, Lucia ;
Friedrich, Matthias G. ;
Garg, Ria ;
Lebel, Julie ;
Henriques, Filipe ;
Karakas, Mahir ;
Cavus, Ersin ;
Petersen, Steffen E. ;
Escalera, Sergio ;
Segui, Santi ;
Rodriguez-Palomares, Jose F. ;
Lekadir, Karim .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (12) :3543-3554
[10]   Novel application of 3D contrast-enhanced CMR to define fibrotic structure of the human sinoatrial node in vivo [J].
Csepe, Thomas A. ;
Zhao, Jichao ;
Sul, Lidiya V. ;
Wang, Yufeng ;
Hansen, Brian J. ;
Li, Ning ;
Ignozzi, Anthony J. ;
Bratasz, Anna ;
Powell, Kimerly A. ;
Kilic, Ahmet ;
Mohler, Peter J. ;
Janssen, Paul M. L. ;
Hummel, John D. ;
Simonetti, Orlando P. ;
Fedorov, Vadim V. .
EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2017, 18 (08) :862-869