Machine learning-based prognostic prediction and surgical guidance for intrahepatic cholangiocarcinoma

被引:1
作者
Huang, Long [1 ,2 ]
Li, Jianbo [1 ,2 ]
Zhu, Shuncang [1 ,2 ]
Wang, Liang [3 ]
Li, Ge [4 ]
Pan, Junyong [5 ]
Zhang, Chun [6 ]
Lai, Jianlin [1 ,2 ]
Tian, Yifeng [1 ,2 ]
Chen, Shi [1 ,2 ]
机构
[1] Fujian Med Univ, Shengli Clin Med Coll, Fuzhou, Fujian, Peoples R China
[2] Fuzhou Univ, Affiliated Prov Hosp, Fujian Prov Hosp, Dept Hepatobiliary Pancreat Surg, Fuzhou, Fujian, Peoples R China
[3] Fujian Med Univ, Dept Hepatopancreatobiliary Surg, Affiliated Hosp 1, Fuzhou, Fujian, Peoples R China
[4] Fujian Med Univ, Union Hosp, Dept Hepatobiliary Surg, Fuzhou, Fujian, Peoples R China
[5] Fujian Med Univ, Affiliated Hosp 2, Dept Hepatobiliary & Pancreat Surg, Quanzhou, Fujian, Peoples R China
[6] Fujian Med Univ, Mindong Hosp, Dept Gen Surg, Ningde, Fujian, Peoples R China
关键词
intrahepatic cholangiocarcinoma; individualized treatment; machine learning; prediction tool; shared decision-making; NON-ANATOMIC RESECTION; HEPATOCELLULAR-CARCINOMA; NOMOGRAM;
D O I
10.5582/bst.2024.01312
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The prognosis following radical surgery for intrahepatic cholangiocarcinoma (ICC) is poor, and optimal follow-up strategies remain unclear, with ongoing debates regarding anatomic resection (AR) versus non-anatomic resection (NAR). This study included 680 patients from five hospitals, comparing a combination of eight feature screening methods and 11 machine learning algorithms to predict prognosis and construct integrated models. These models were assessed using nested cross-validation and various datasets, benchmarked against TNM stage and performance status. Evaluation metrics such as area under the curve (AUC) were applied. Prognostic models incorporating screened features showed superior performance compared to unselected models, with AR emerging as a key variable. Treatment recommendation models for surgical approaches, including DeepSurv, neural network multitask logistic regression (N-MTLR), and Kernel support vector machine (SVM), indicated that N-MTLR's recommendations were associated with survival benefits. Additionally, some patients identified as suitable for NAR were within groups previously considered for AR. In conclusion, three robust clinical models were developed to predict ICC prognosis and optimize surgical decisions, improving patient outcomes and supporting shared decision-making for patients and surgeons.
引用
收藏
页码:545 / 554
页数:10
相关论文
共 32 条
[1]   Moving towards best practice when using inverse probability of treatment weighting (IPTW) using the propensity score to estimate causal treatment effects in observational studies [J].
Austin, Peter C. ;
Stuart, Elizabeth A. .
STATISTICS IN MEDICINE, 2015, 34 (28) :3661-3679
[2]   Cholangiocarcinoma 2020: the next horizon in mechanisms and management [J].
Banales, Jesus M. ;
Marin, Jose J. G. ;
Lamarca, Angela ;
Rodrigues, Pedro M. ;
Khan, Shahid A. ;
Roberts, Lewis R. ;
Cardinale, Vincenzo ;
Carpino, Guido ;
Andersen, Jesper B. ;
Braconi, Chiara ;
Calvisi, Diego F. ;
Perugorria, Maria J. ;
Fabris, Luca ;
Boulter, Luke ;
Macias, Rocio I. R. ;
Gaudio, Eugenio ;
Alvaro, Domenico ;
Gradilone, Sergio A. ;
Strazzabosco, Mario ;
Marzioni, Marco ;
Coulouarn, Cedric ;
Fouassier, Laura ;
Raggi, Chiara ;
Invernizzi, Pietro ;
Mertens, Joachim C. ;
Moncsek, Anja ;
Rizvi, Sumera ;
Heimbach, Julie ;
Koerkamp, Bas Groot ;
Bruix, Jordi ;
Forner, Alejandro ;
Bridgewater, John ;
Valle, Juan W. ;
Gores, Gregory J. .
NATURE REVIEWS GASTROENTEROLOGY & HEPATOLOGY, 2020, 17 (09) :557-588
[3]   A survey on deep multimodal learning for computer vision: advances, trends, applications, and datasets [J].
Bayoudh, Khaled ;
Knani, Raja ;
Hamdaoui, Faycal ;
Mtibaa, Abdellatif .
VISUAL COMPUTER, 2022, 38 (08) :2939-2970
[4]   Top advances of the year: Hepatobiliary cancers [J].
Coffman-D'Annibale, Kelley L. ;
Greten, Tim F. .
CANCER, 2023, 129 (08) :1149-1155
[5]   High-Order Laplacian Regularized Low-Rank Representation for Multimodal Dementia Diagnosis [J].
Dong, Aimei ;
Li, Zhigang ;
Wang, Mingliang ;
Shen, Dinggang ;
Liu, Mingxia .
FRONTIERS IN NEUROSCIENCE, 2021, 15
[6]  
Fotso S, DEEP NEURAL NETWORKS
[7]   A multimodal neuroimaging classifier for alcohol dependence [J].
Guggenmos, Matthias ;
Schmack, Katharina ;
Veer, Ilya M. ;
Lett, Tristram ;
Sekutowicz, Maria ;
Sebold, Miriam ;
Garbusow, Maria ;
Sommer, Christian ;
Wittchen, Hans-Ulrich ;
Zimmermann, Ulrich S. ;
Smolka, Michael N. ;
Walter, Henrik ;
Heinz, Andreas ;
Sterzer, Philipp .
SCIENTIFIC REPORTS, 2020, 10 (01)
[8]   A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models [J].
Hindocha, Sumeet ;
Charlton, Thomas G. ;
Linton-Reid, Kristofer ;
Hunter, Benjamin ;
Chan, Charleen ;
Ahmed, Merina ;
Robinson, Emily J. ;
Orton, Matthew ;
Ahmad, Shahreen ;
McDonald, Fiona ;
Locke, Imogen ;
Power, Danielle ;
Blackledge, Matthew ;
Lee, Richard W. ;
Aboagye, Eric O. .
EBIOMEDICINE, 2022, 77
[9]   Development and validation of a gradient boosting machine to predict prognosis after liver resection for intrahepatic cholangiocarcinoma [J].
Ji, Gu-Wei ;
Jiao, Chen-Yu ;
Xu, Zheng-Gang ;
Li, Xiang-Cheng ;
Wang, Ke ;
Wang, Xue-Hao .
BMC CANCER, 2022, 22 (01)
[10]   Anatomic versus non-anatomic resection for hepatocellular carcinoma, do we have an answer? A meta-analysis [J].
Jiao, Shoufei ;
Li, Guanqun ;
Zhang, Dongxin ;
Xu, Yingchen ;
Liu, Jie ;
Li, Guangming .
INTERNATIONAL JOURNAL OF SURGERY, 2020, 80 :243-255