Siamese Adaptive Template Update Network for Visual Tracking

被引:0
|
作者
Wen, Jia [1 ,2 ]
Ren, Kejun [1 ,2 ]
Xiang, Yang [1 ,2 ]
Tang, Dandan [1 ,2 ]
机构
[1] Yanshan Univ, Sch Informat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[2] Key Lab Comp Virtual Technol & Syst Integrat Hebe, Shijiazhuang, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature enhancement; Template update; Siamese network; Single-target tracking;
D O I
10.1007/978-981-99-4742-3_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Siamese-based trackers have achieved strong performance in single-target tracking. Effective feature response maps are fundamental to improving tracker performance when dealing with challenging scenes. However, most Siamese-based trackers have constant template features when tracking. This approach greatly limits the effectiveness of the tracker in complex scenes. To solve this issue, we proposed a novel tracking framework, termed as SiamATU, which adaptively performs update of template features. This update method uses a multi-stage training strategy during the training process so that the template update is gradually optimized. In addition, we designed a feature enhancement module to enhance the discriminative and robustness of the features, which focuses on the rich correlation between the template image and the search image, and then makes the model more focused on the tracking object to achieve more precise tracking. Through extensive experiments on GOT-10K, UAV123, OTB100, and other datasets, SiamATU has a leading performance, which runs at 26.23FPS, exceeding the real-time level of 25FPS.
引用
收藏
页码:485 / 497
页数:13
相关论文
共 50 条
  • [21] Siamese visual tracking with enriched semantics and dynamic template
    Hui-san Wang
    Hong-ying Zhang
    Optoelectronics Letters, 2021, 17 : 241 - 246
  • [22] Siamese visual tracking with enriched semantics and dynamic template
    王汇三
    张红颖
    OptoelectronicsLetters, 2021, 17 (04) : 241 - 246
  • [23] Siamese network ensemble for visual tracking
    Jiang, Chenru
    Xiao, Jimin
    Xie, Yanchun
    Tillo, Tammam
    Huang, Kaizhu
    NEUROCOMPUTING, 2018, 275 : 2892 - 2903
  • [24] Siamese Tracking with Adaptive Template-Updating Strategy
    Xu, Zheng
    Luo, Haibo
    Hui, Bin
    Chang, Zheng
    Ju, Moran
    APPLIED SCIENCES-BASEL, 2019, 9 (18):
  • [25] Siamese Visual Tracking with Robust Adaptive Learning
    Zhang, Wancheng
    Chen, Zhi
    Liu, Peizhong
    Deng, Jianhua
    PROCEEDINGS OF 2019 IEEE 13TH INTERNATIONAL CONFERENCE ON ANTI-COUNTERFEITING, SECURITY, AND IDENTIFICATION (IEEE-ASID'2019), 2019, : 153 - 157
  • [26] Siamsdt: a self-adaptive dynamic template siamese network for airborne visual tracking of MAVs on heterogeneous FPGA-SoC
    Zhang, Yuxin
    Wen, Jiazheng
    Wu, Ran
    Liu, Huanyu
    Li, Junbao
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (03):
  • [27] End-to-end feature fusion Siamese network for adaptive visual tracking
    Guo, Dongyan
    Wang, Jun
    Zhao, Weixuan
    Cui, Ying
    Wang, Zhenhua
    Chen, Shengyong
    IET IMAGE PROCESSING, 2021, 15 (01) : 91 - 100
  • [28] Template-Refine Network for Siamese Object Tracking
    Lu, Xiaofeng
    Li, Gaoxiang
    Yan, Zhaoyu
    Teng, Lin
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2024, 19 (10) : 1652 - 1660
  • [29] Visual tracking with conditionally adaptive multiple template update scheme for intricate videos
    Joy, Emmanuel
    Peter, J. Dinesh
    MULTIMEDIA SYSTEMS, 2018, 24 (02) : 175 - 194
  • [30] Visual tracking with conditionally adaptive multiple template update scheme for intricate videos
    Emmanuel Joy
    J. Dinesh Peter
    Multimedia Systems, 2018, 24 : 175 - 194