On 3-component domination numbers in graphs

被引:0
|
作者
Gao, Zhipeng [1 ]
Lang, Rongling [2 ]
Xi, Changqing [3 ,4 ]
Yue, Jun [5 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Tiangong Univ, Sch Math Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Domination; Total domination; Component domination; SETS; P(N;
D O I
10.1016/j.dam.2025.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lets be a positive integer and let G = (V(G), E ( G )) be a graph. A vertex set D is an scomponent dominating set of G if every vertex outside D has a neighbor in D and every component of the subgraph induced by D in G contains at least s vertices. The minimum cardinality of an s-component dominating set of G is the scomponent domination number gamma s ( G ) of G . Determining the exact values or bounds of domination parameters on graphs is an important, basic, and challenging problem in the graph domination field. The tree T and the generalized Petersen graph P ( n , k ) with k >= 1 are the significant graph classes in graph theory. In this paper, we first give an upper bound of the 3-component domination number of a tree T . Then, we study the s-component domination numbers on P ( n , k ) and get the exact values of 3-component domination numbers on P ( n , 1) and P ( n , 2). (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [41] Domination and Outer Connected Domination in Maximal Outerplanar Graphs
    Zhuang, Wei
    GRAPHS AND COMBINATORICS, 2021, 37 (06) : 2679 - 2696
  • [42] Domination in fuzzy graphs - I
    Somasundaram, A
    Somasundaram, S
    PATTERN RECOGNITION LETTERS, 1998, 19 (09) : 787 - 791
  • [43] Domination in products of fuzzy graphs
    Somasundaram, A
    INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2005, 13 (02) : 195 - 204
  • [44] Connected domination of regular graphs
    Duckworth, W.
    Mans, B.
    DISCRETE MATHEMATICS, 2009, 309 (08) : 2305 - 2322
  • [45] On matching and semitotal domination in graphs
    Henning, Michael A.
    Marcon, Alister J.
    DISCRETE MATHEMATICS, 2014, 324 : 13 - 18
  • [46] Inverse total domination in graphs
    Kulli, V. R.
    Iyer, R. R.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (05) : 613 - 620
  • [47] Complementary total domination in graphs
    Chaluvaraju, B.
    Soner, N. D.
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2007, 10 (04) : 505 - 516
  • [48] Total Domination in Regular Graphs
    Hoppen, Carlos
    Mansan, Giovane
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2019, 346 : 523 - 533
  • [49] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [50] TOTAL DOMINATION VERSUS PAIRED-DOMINATION IN REGULAR GRAPHS
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 573 - 586