On 3-component domination numbers in graphs

被引:0
|
作者
Gao, Zhipeng [1 ]
Lang, Rongling [2 ]
Xi, Changqing [3 ,4 ]
Yue, Jun [5 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Tiangong Univ, Sch Math Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Domination; Total domination; Component domination; SETS; P(N;
D O I
10.1016/j.dam.2025.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lets be a positive integer and let G = (V(G), E ( G )) be a graph. A vertex set D is an scomponent dominating set of G if every vertex outside D has a neighbor in D and every component of the subgraph induced by D in G contains at least s vertices. The minimum cardinality of an s-component dominating set of G is the scomponent domination number gamma s ( G ) of G . Determining the exact values or bounds of domination parameters on graphs is an important, basic, and challenging problem in the graph domination field. The tree T and the generalized Petersen graph P ( n , k ) with k >= 1 are the significant graph classes in graph theory. In this paper, we first give an upper bound of the 3-component domination number of a tree T . Then, we study the s-component domination numbers on P ( n , k ) and get the exact values of 3-component domination numbers on P ( n , 1) and P ( n , 2). (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [31] Domination and packing in graphs
    Gomez, Renzo
    Gutierrez, Juan
    DISCRETE MATHEMATICS, 2025, 348 (05)
  • [32] Semitotal Domination in Graphs
    Goddard, Wayne
    Henning, Michael A.
    McPillan, Charles A.
    UTILITAS MATHEMATICA, 2014, 94 : 67 - 81
  • [33] On α-total domination in graphs
    Henning, Michael A.
    Rad, Nader Jafari
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (7-8) : 1143 - 1151
  • [34] Total Roman {3}-domination in Graphs
    Shao, Zehui
    Mojdeh, Doost Ali
    Volkmann, Lutz
    SYMMETRY-BASEL, 2020, 12 (02):
  • [35] Semitotal Domination in Graphs: Partition and Algorithmic Results
    Henning, Michael A.
    Marcon, Alister J.
    UTILITAS MATHEMATICA, 2018, 106 : 165 - 184
  • [36] Total domination in maximal outerplanar graphs II
    Dorfling, Michael
    Hattingh, Johannes H.
    Jonck, Elizabeth
    DISCRETE MATHEMATICS, 2016, 339 (03) : 1180 - 1188
  • [37] Perfectly relating the domination, total domination, and paired domination numbers of a graph
    Alvarado, Jose D.
    Dantas, Simone
    Rautenbach, Dieter
    DISCRETE MATHEMATICS, 2015, 338 (08) : 1424 - 1431
  • [38] Domination and total domination in cubic graphs of large girth
    Dantas, Simone
    Joos, Felix
    Loewenstein, Christian
    Machado, Deiwison S.
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2014, 174 : 128 - 132
  • [39] Paired domination versus domination and packing number in graphs
    Magda Dettlaff
    Didem Gözüpek
    Joanna Raczek
    Journal of Combinatorial Optimization, 2022, 44 : 921 - 933
  • [40] Paired domination versus domination and packing number in graphs
    Dettlaff, Magda
    Gozupek, Didem
    Raczek, Joanna
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (02) : 921 - 933