On 3-component domination numbers in graphs

被引:0
|
作者
Gao, Zhipeng [1 ]
Lang, Rongling [2 ]
Xi, Changqing [3 ,4 ]
Yue, Jun [5 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Tiangong Univ, Sch Math Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Domination; Total domination; Component domination; SETS; P(N;
D O I
10.1016/j.dam.2025.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lets be a positive integer and let G = (V(G), E ( G )) be a graph. A vertex set D is an scomponent dominating set of G if every vertex outside D has a neighbor in D and every component of the subgraph induced by D in G contains at least s vertices. The minimum cardinality of an s-component dominating set of G is the scomponent domination number gamma s ( G ) of G . Determining the exact values or bounds of domination parameters on graphs is an important, basic, and challenging problem in the graph domination field. The tree T and the generalized Petersen graph P ( n , k ) with k >= 1 are the significant graph classes in graph theory. In this paper, we first give an upper bound of the 3-component domination number of a tree T . Then, we study the s-component domination numbers on P ( n , k ) and get the exact values of 3-component domination numbers on P ( n , 1) and P ( n , 2). (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [21] Claw-Free Graphs with Equal 2-Domination and Domination Numbers
    Hansberg, Adriana
    Randerath, Bert
    Volkmann, Lutz
    FILOMAT, 2016, 30 (10) : 2795 - 2801
  • [22] Maximum sizes of graphs with given restrained domination numbers
    Joubert, Ernst J.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (06) : 829 - 837
  • [23] On domination and 2-degree-packing numbers in graphs
    Vazquez-Avila, Adrian
    RAIRO-OPERATIONS RESEARCH, 2024, 58 (01) : 1005 - 1010
  • [24] Algorithmic aspects of Roman {3}-domination in graphs
    Chakradhar, Padamutham
    Reddy, Palagiri Venkata Subba
    RAIRO-OPERATIONS RESEARCH, 2022, 56 (04) : 2277 - 2291
  • [25] OUTER-K-CONNECTED COMPONENT DOMINATION IN GRAPHS
    Akhbari, M. H.
    Eslahchi, Ch.
    Rad, N. Jafari
    Hasni, R.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2011, 8 (02) : 131 - 139
  • [26] FORCING DOMINATION NUMBERS OF GRAPHS UNDER SOME BINARY OPERATIONS
    Armada, Cris L.
    Canoy, Sergio R., Jr.
    Go, Carmelito E.
    ADVANCES AND APPLICATIONS IN DISCRETE MATHEMATICS, 2018, 19 (03): : 213 - 228
  • [27] Total domination in maximal outerplanar graphs
    Dorfling, Michael
    Hattingh, Johannes H.
    Jonck, Elizabeth
    DISCRETE APPLIED MATHEMATICS, 2017, 217 : 506 - 511
  • [28] Revisiting Domination, Hop Domination, and Global Hop Domination in Graphs
    Salasalan, Gemma
    Canoy Jr, Sergio R.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (04): : 1415 - 1428
  • [29] Domination in Circulant Graphs
    Rad, Nader Jafari
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2009, 17 (01): : 169 - 176
  • [30] Domination and Independent Domination in Extended Supergrid Graphs
    Chen, Jong-Shin
    Hung, Ruo-Wei
    Keshavarz-Kohjerdi, Fatemeh
    Huang, Yung-Fa
    ALGORITHMS, 2022, 15 (11)