On 3-component domination numbers in graphs

被引:0
|
作者
Gao, Zhipeng [1 ]
Lang, Rongling [2 ]
Xi, Changqing [3 ,4 ]
Yue, Jun [5 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian, Peoples R China
[2] Beihang Univ, Sch Elect & Informat Engn, Beijing, Peoples R China
[3] Nankai Univ, Ctr Combinator, Tianjin, Peoples R China
[4] Nankai Univ, LPMC, Tianjin, Peoples R China
[5] Tiangong Univ, Sch Math Sci, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
Domination; Total domination; Component domination; SETS; P(N;
D O I
10.1016/j.dam.2025.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lets be a positive integer and let G = (V(G), E ( G )) be a graph. A vertex set D is an scomponent dominating set of G if every vertex outside D has a neighbor in D and every component of the subgraph induced by D in G contains at least s vertices. The minimum cardinality of an s-component dominating set of G is the scomponent domination number gamma s ( G ) of G . Determining the exact values or bounds of domination parameters on graphs is an important, basic, and challenging problem in the graph domination field. The tree T and the generalized Petersen graph P ( n , k ) with k >= 1 are the significant graph classes in graph theory. In this paper, we first give an upper bound of the 3-component domination number of a tree T . Then, we study the s-component domination numbers on P ( n , k ) and get the exact values of 3-component domination numbers on P ( n , 1) and P ( n , 2). (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:53 / 62
页数:10
相关论文
共 50 条
  • [1] 3-component domination numbers in graphs
    Gao, Zhipeng
    Lang, Rongling
    Xi, Changqing
    Yue, Jun
    DISCRETE MATHEMATICS, 2024, 347 (04)
  • [2] Domination and Total Domination Contraction Numbers of Graphs
    Huang, Jia
    Xu, Jun-Ming
    ARS COMBINATORIA, 2010, 94 : 431 - 443
  • [3] Certain domination numbers for Cartesian product of graphs
    Arulanand, S.
    Rajan, R. Sundara
    Prabhu, S.
    Stephen, Sudeep
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (03) : 1045 - 1058
  • [4] GRAPHS WITH EQUAL DOMINATION AND CERTIFIED DOMINATION NUMBERS
    Dettlaff, Magda
    Lemanska, Magdalena
    Miotk, Mateusz
    Topp, Jerzy
    Ziemann, Radoslaw
    Zylinski, Pawel
    OPUSCULA MATHEMATICA, 2019, 39 (06) : 815 - 827
  • [5] DOMINATION SUBDIVISION AND DOMINATION MULTISUBDIVISION NUMBERS OF GRAPHS
    Dettlaff, Magda
    Raczek, Joanna
    Topp, Jerzy
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (04) : 829 - 839
  • [6] 3-Distance Domination Numbers of Some Graphs
    Hassan, Javier A.
    Iyah, Usman S.
    Paradji, Nur-Aini M.
    Gamorez, Anabel E.
    Ahmad, Eman C.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04) : 981 - 986
  • [7] On rainbow domination numbers of graphs
    Shao, Zehui
    Liang, Meilian
    Yin, Chuang
    Xu, Xiaodong
    Pavlic, Polona
    Zerovnik, Janez
    INFORMATION SCIENCES, 2014, 254 : 225 - 234
  • [8] On 2-domination and independence domination numbers of graphs
    Hansberg, Adriana
    Volkmann, Lutz
    ARS COMBINATORIA, 2011, 101 : 405 - 415
  • [9] On graphs with equal domination and 2-domination numbers
    Hansberg, Adriana
    Volkmann, Lutz
    DISCRETE MATHEMATICS, 2008, 308 (11) : 2277 - 2281
  • [10] Monophonic Eccentric Domination Numbers of Graphs
    Canoy, Sergio R., Jr.
    Gamorez, Anabel E.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2022, 15 (02): : 635 - 645