Nucleation kinetics and virtual melting in shear-induced structural transitions

被引:2
作者
Li, Wei [1 ]
Peng, Yi [2 ,3 ]
Still, Tim [4 ]
Yodh, A. G. [4 ]
Han, Yilong [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Hong Kong, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[4] Univ Penn, Dept Phys & Astron, Philadelphia, PA 19104 USA
关键词
crystal-crystal transition; shear-induced transition; nucleation kinetics; virtual melting; colloid; SOLID-SOLID TRANSITIONS; PHASE-TRANSFORMATIONS; COLLOIDAL CRYSTALS; CRYSTALLIZATION; AMORPHIZATION; SUSPENSIONS; DYNAMICS; BEHAVIOR; SILICON; GROWTH;
D O I
10.1088/1361-6633/ad99fd
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Large shear deformations can induce structural changes within crystals, yet the microscopic kinetics underlying these transformations are difficult for experimental observation and theoretical understanding. Here, we drive shear-induced structural transitions from square (square) lattices to triangular (triangle) lattices in thin-film colloidal crystals and directly observe the accompanying kinetics with single-particle resolution inside the bulk crystal. When the oscillatory shear strain amplitude 0.1 <=gamma(m)<0.4, triangle-lattice nuclei are surrounded by a liquid layer throughout their growth due to localized shear strain at the interface. Such virtual melting at crystalline interface has been predicted in theory and simulation, but have not been observed in experiment. The mean liquid layer thickness is proportional to the shear which can be explained by the Lindemann melting criterion. This provides an alternative explanation on virtual melting.
引用
收藏
页数:7
相关论文
共 63 条
[1]   Premelting at defects within bulk colloidal crystals [J].
Alsayed, AM ;
Islam, MF ;
Zhang, J ;
Collings, PJ ;
Yodh, AG .
SCIENCE, 2005, 309 (5738) :1207-1210
[2]   Fabrication of large-area face-centered-cubic hard-sphere colloidal crystals by shear alignment [J].
Amos, RM ;
Rarity, JG ;
Tapster, PR ;
Shepherd, TJ ;
Kitson, SC .
PHYSICAL REVIEW E, 2000, 61 (03) :2929-2935
[3]   Insights into phase transition kinetics from colloid science [J].
Anderson, VJ ;
Lekkerkerker, HNW .
NATURE, 2002, 416 (6883) :811-815
[4]   Oscillatory shear-induced 3D crystalline order in colloidal hard-sphere fluids [J].
Besseling, T. H. ;
Hermes, M. ;
Fortini, A. ;
Dijkstra, M. ;
Imhof, A. ;
van Blaaderen, A. .
SOFT MATTER, 2012, 8 (26) :6931-6939
[5]   Driving diffusionless transformations in colloidal crystals using DNA handshaking [J].
Casey, Marie T. ;
Scarlett, Raynaldo T. ;
Rogers, W. Benjamin ;
Jenkins, Ian ;
Sinno, Talid ;
Crocker, John C. .
NATURE COMMUNICATIONS, 2012, 3
[6]   Shear-induced configurations of confined colloidal suspensions [J].
Cohen, I ;
Mason, TG ;
Weitz, DA .
PHYSICAL REVIEW LETTERS, 2004, 93 (04) :046001-1
[7]   Slip, yield, and bands in colloidal crystals under oscillatory shear [J].
Cohen, Itai ;
Davidovitch, Benny ;
Schofield, Andrew B. ;
Brenner, Michael P. ;
Weitz, David A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (21)
[8]   Methods of digital video microscopy for colloidal studies [J].
Crocker, JC ;
Grier, DG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (01) :298-310
[9]   Interface migration in aluminum bicrystals via premelting [J].
Dad, Muhammad Umar ;
Perveen, Atia ;
Liang, Hongtao ;
Yang, Yang .
SURFACES AND INTERFACES, 2021, 26
[10]   The physics of premelted ice and its geophysical consequences [J].
Dash, J. G. ;
Rempel, A. W. ;
Wettlaufer, J. S. .
REVIEWS OF MODERN PHYSICS, 2006, 78 (03) :695-741