On the asymptotic scaling of the von Neumann entropy in quasifree fermionic right mover/left mover systems

被引:0
作者
Aschbacher, Walter H. [1 ]
机构
[1] Univ Toulon & Var, Aix Marseille Univ, CNRS, CPT, Toulon, France
关键词
ENTANGLEMENT; CHAIN;
D O I
10.1063/5.0213585
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For the general class of quasifree fermionic right mover/left mover systems over the infinitely extended two-sided discrete line introduced in Aschbacher [Rev. Math. Phys. 35, 2330001 (2023)] within the algebraic framework of quantum statistical mechanics, we study the von Neumann entropy of a contiguous subsystem of finite length in interaction with its environment. In particular, under the assumption of spatial translation invariance, we analyze the asymptotic behavior of the von Neumann entropy for large subsystem lengths and prove that its leading order density is, in general, nonvanishing and displays the signature of a mixture of the independent thermal species underlying the right mover/left mover system. As special cases, the formalism covers so-called nonequilibrium steady states, thermal equilibrium states, and ground states. Moreover, for general Fermi functions, we derive a necessary and sufficient criterion for the von Neumann entropy density to vanish.
引用
收藏
页数:41
相关论文
共 40 条
[1]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[2]  
[Anonymous], 1970, PUBL RES I MATH SCI, V6, P385, DOI DOI 10.2977/PRIMS/1195193913
[3]   ON THE XY-MODEL ON 2-SIDED INFINITE CHAIN [J].
ARAKI, H .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (02) :277-296
[4]   GROUND-STATES OF THE XY-MODEL [J].
ARAKI, H ;
MATSUI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 101 (02) :213-245
[5]  
ARAKI H, 1987, CONT MATH, V62, P23, DOI DOI 10.1090/CONM/062/878376
[6]  
Araki H., 1968, PUBL RES I MATH SCI, V4, P387, DOI DOI 10.2977/PRIMS/1195194882
[7]   On Araki's extension of the Jordan-Wigner transformation [J].
Aschbacher, Walter H. .
REVIEWS IN MATHEMATICAL PHYSICS, 2023, 35 (05)
[8]   Non-zero entropy density in the XY chain out of equilibrium [J].
Aschbacher, Walter H. .
LETTERS IN MATHEMATICAL PHYSICS, 2007, 79 (01) :1-16
[9]   Heat flux in general quasifree fermionic right mover/left mover systems [J].
Aschbacher, Walter H. .
REVIEWS IN MATHEMATICAL PHYSICS, 2021, 33 (06)
[10]  
Bratteli O., 1987, OPERATOR ALGEBRAS QU, V2