共 99 条
- [1] Andreev V.K., Gaponenko Y.A., Goncharova O.N., Pukhnachev V.V., Mathematical models of convection, Mathematical Models of Convection, (2012)
- [2] Aranson I.S., Kramer L., The world of the complex Ginzburg-Landau equation, Rev. Mod. Phys., 74, (2002)
- [3] Arcidiacono L., Kuehn C., Blowing-up nonautonomous vector fields: infinite delay equations and invariant manifolds, (2020)
- [4] Avitabile D., Desroches M., Knobloch E., Spatiotemporal canards in neural field equations, Phys. Rev. E, 95, (2017)
- [5] Avitabile D., Desroches M., Knobloch E., Krupa M., Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system, Proc. R. Soc. A, Math. Phys. Eng. Sci., 473, (2017)
- [6] Avitabile D., Desroches M., Veltz R., Wechselberger M., Local theory for spatio-temporal canards and delayed bifurcations, SIAM J. Math. Anal., 52, pp. 5703-5747, (2020)
- [7] Avitabile D., Lloyd D.J., Burke J., Knobloch E., Sandstede B., To snake or not to snake in the planar Swift–Hohenberg equation, SIAM J. Appl. Dyn. Syst., 9, pp. 704-733, (2010)
- [8] Baesens C., Slow sweep through a period-doubling cascade: delayed bifurcations and renormalisation, Phys. D: Nonlinear Phenom., 53, pp. 319-375, (1991)
- [9] Benoit E., Dynamic bifurcations, Proceedings of a Conference Held in Luminy, France, March 5-10, 1990, (1991)
- [10] Bilinsky L., Baer S., Slow passage through a Hopf bifurcation in excitable nerve cables: spatial delays and spatial memory effects, Bull. Math. Biol., 80, pp. 130-150, (2018)