Specific endophenotypes in EEG microstates for methamphetamine use disorder

被引:1
|
作者
Gao, Xurong [1 ]
Chen, Yun-Hsuan [1 ]
Zeng, Ziyi [1 ]
Zheng, Wenyao [1 ]
Chai, Chengpeng [1 ]
Wu, Hemmings [2 ]
Zhu, Zhoule [2 ]
Yang, Jie [1 ]
Zhong, Lihua [3 ]
Shen, Hua [4 ]
Sawan, Mohamad [1 ]
机构
[1] Westlake Univ, CenBRAIN Neurotech Ctr Excellence, Sch Engn, Hangzhou, Peoples R China
[2] Zhejiang Univ, Affiliated Hosp 2, Sch Med, Dept Neurosurg, Hangzhou, Peoples R China
[3] Zhejiang Gongchen Compulsory Isolated Detoxificat, Dept Educ & Correct, Hangzhou, Peoples R China
[4] Zhejiang Liangzhu Compulsory Isolated Detoxificat, Hangzhou, Peoples R China
来源
FRONTIERS IN PSYCHIATRY | 2025年 / 15卷
关键词
EEG; microstate; methamphetamine addiction; resting states; detection biomarkers; machine learning; classification; SCHIZOPHRENIA; ALPHA; TOPOGRAPHY; DURATION; DEMENTIA;
D O I
10.3389/fpsyt.2024.1513793
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Background Electroencephalogram (EEG) microstates, which reflect large-scale resting-state networks of the brain, have been proposed as potential endophenotypes for methamphetamine use disorder (MUD). However, current endophenotypes lack refinement at the frequency band level, limiting their precision in identifying key frequency bands associated with MUD.Methods In this study, we investigated EEG microstate dynamics across various frequency bands and different tasks, utilizing machine learning to classify MUD and healthy controls.Results During the resting state, the highest classification accuracy for detecting MUD was 85.5%, achieved using microstate parameters in the alpha band. Among these, the coverage of microstate class A contributed the most, suggesting it as the most promising endophenotype for specifying MUD.Discussion We accurately categorize the endophenotype of MUD into different sub-frequency bands, thereby providing reliable biomarkers.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Assessment of rTMS treatment effects for methamphetamine use disorder based on EEG microstates
    Li, Yongcong
    Yang, Banghua
    Ma, Jun
    Gao, Shouwei
    Zeng, Hui
    Wang, Wen
    BEHAVIOURAL BRAIN RESEARCH, 2024, 465
  • [2] Disrupted brain network dynamics and cognitive functions in methamphetamine use disorder: insights from EEG microstates
    Chen, Tianzhen
    Su, Hang
    Zhong, Na
    Tan, Haoye
    Li, Xiaotong
    Meng, Yiran
    Duan, Chunmei
    Zhang, Congbin
    Bao, Juwang
    Xu, Ding
    Song, Weidong
    Zou, Jixue
    Liu, Tao
    Zhan, Qingqing
    Jiang, Haifeng
    Zhao, Min
    BMC PSYCHIATRY, 2020, 20 (01)
  • [3] Disrupted brain network dynamics and cognitive functions in methamphetamine use disorder: insights from EEG microstates
    Tianzhen Chen
    Hang Su
    Na Zhong
    Haoye Tan
    Xiaotong Li
    Yiran Meng
    Chunmei Duan
    Congbin Zhang
    Juwang Bao
    Ding Xu
    Weidong Song
    Jixue Zou
    Tao Liu
    Qingqing Zhan
    Haifeng Jiang
    Min Zhao
    BMC Psychiatry, 20
  • [4] EEG Endophenotypes in Autism Spectrum Disorder
    Capal, J.
    Carosella, C.
    Pattanaik, E.
    Dominick, K.
    Thomas, C.
    Lieberman, R.
    Horn, P.
    Manning-Courtney, P.
    ANNALS OF NEUROLOGY, 2016, 80 : S388 - S388
  • [5] EEG endophenotypes in autism spectrum disorder
    Capal, Jamie K.
    Carosella, Christopher
    Corbin, Elora
    Horn, Paul S.
    Caine, Rebecca
    Manning-Courtney, Patricia
    EPILEPSY & BEHAVIOR, 2018, 88 : 341 - 348
  • [6] EEG Endophenotypes in Autism Spectrum Disorder
    Capal, Jamie
    Horn, Paul
    Carosella, Christopher
    Corbin, Elora
    Manning-Courtney, Patricia
    NEUROLOGY, 2018, 90
  • [7] EEG microstates of dreams
    Brechet, Lucie
    Brunet, Denis
    Perogamvros, Lampros
    Tononi, Giulio
    Michel, Christoph M.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [8] Resting-state EEG microstates in children with Autism Spectrum Disorder
    Russo, E.
    Rotonda, M.
    INTERNATIONAL JOURNAL OF PSYCHOPHYSIOLOGY, 2018, 131 : S145 - S146
  • [9] Spectral decomposition of EEG microstates in post-traumatic stress disorder
    Terpou, Braeden A.
    Shaw, Saurabh B.
    Theberge, Jean
    Ferat, Victor
    Michel, Christoph M.
    McKinnon, Margaret C.
    Lanius, Ruth A.
    Ros, Tomas
    NEUROIMAGE-CLINICAL, 2022, 35
  • [10] EEG microstates of dreams
    Lucie Bréchet
    Denis Brunet
    Lampros Perogamvros
    Giulio Tononi
    Christoph M. Michel
    Scientific Reports, 10