A novel deep learning-based framework with particle swarm optimisation for intrusion detection in computer networks

被引:0
|
作者
Yilmaz, Abdullah Asim [1 ]
机构
[1] Atilim Univ, Comp Engn Dept, Ankara, Turkiye
来源
PLOS ONE | 2025年 / 20卷 / 02期
关键词
K-MEANS; MACHINE;
D O I
10.1371/journal.pone.0316253
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Intrusion detection plays a significant role in the provision of information security. The most critical element is the ability to precisely identify different types of intrusions into the network. However, the detection of intrusions poses a important challenge, as many new types of intrusion are now generated by cyber-attackers every day. A robust system is still elusive, despite the various strategies that have been proposed in recent years. Hence, a novel deep-learning-based architecture for detecting intrusions into a computer network is proposed in this paper. The aim is to construct a hybrid system that enhances the efficiency and accuracy of intrusion detection. The main contribution of our work is a novel deep learning-based hybrid architecture in which PSO is used for hyperparameter optimisation and three well-known pre-trained network models are combined in an optimised way. The suggested method involves six key stages: data gathering, pre-processing, deep neural network (DNN) architecture design, optimisation of hyperparameters, training, and evaluation of the trained DNN. To verify the superiority of the suggested method over alternative state-of-the-art schemes, it was evaluated on the KDDCUP'99, NSL-KDD and UNSW-NB15 datasets. Our empirical findings show that the proposed model successfully and correctly classifies different types of attacks with 82.44%, 90.42% and 93.55% accuracy values obtained on UNSW-B15, NSL-KDD and KDDCUP'99 datasets, respectively, and outperforms alternative schemes in the literature.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A Novel Deep Learning-Based Intrusion Detection System for IoT Networks
    Awajan, Albara
    COMPUTERS, 2023, 12 (02)
  • [2] A Deep Learning-Based Framework for Feature Extraction and Classification of Intrusion Detection in Networks
    Naveed, Muhammad
    Arif, Fahim
    Usman, Syed Muhammad
    Anwar, Aamir
    Hadjouni, Myriam
    Elmannai, Hela
    Hussain, Saddam
    Ullah, Syed Sajid
    Umar, Fazlullah
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [3] Deep Learning-based Intrusion Detection for IoT Networks
    Ge, Mengmeng
    Fu, Xiping
    Syed, Naeem
    Baig, Zubair
    Teo, Gideon
    Robles-Kelly, Antonio
    2019 IEEE 24TH PACIFIC RIM INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING (PRDC 2019), 2019, : 256 - 265
  • [4] Incremental particle swarm optimisation for intrusion detection
    Tsai, Chun-Wei
    IET NETWORKS, 2013, 2 (03) : 124 - 130
  • [5] Optimized deep learning-based intrusion detection for wireless sensor networks
    Vembu, Gowdhaman
    Ramasamy, Dhanapal
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2023, 36 (13)
  • [6] A hybrid deep learning-based intrusion detection system for IoT networks
    Khan, Noor Wali
    Alshehri, Mohammed S.
    Khan, Muazzam A.
    Almakdi, Sultan
    Moradpoor, Naghmeh
    Alazeb, Abdulwahab
    Ullah, Safi
    Naz, Naila
    Ahmad, Jawad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13491 - 13520
  • [7] A deep learning-based intrusion detection system for in-vehicle networks
    Alqahtani, Hamed
    Kumar, Gulshan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [8] Enhanced and Explainable Deep Learning-Based Intrusion Detection in IoT Networks
    Gyawali, Sohan
    Sartipi, Kamran
    Van Ravesteyn, Benjamin
    Huang, Jiaqi
    Jiang, Yili
    MILCOM 2023 - 2023 IEEE MILITARY COMMUNICATIONS CONFERENCE, 2023,
  • [9] Intrusion Detection Framework for CAN Networks Based on Evidence Deep Learning
    Shi, Qin
    Li, Zhiwei
    Cheng, Teng
    Zhang, Qiang
    Wang, Wenchong
    Qiche Gongcheng/Automotive Engineering, 2024, 46 (11): : 2039 - 2045
  • [10] Deep Learning-Based Intrusion Detection with Adversaries
    Wang, Zheng
    IEEE ACCESS, 2018, 6 : 38367 - 38384